Alcohol (Q and A)

A. Try out – 1:

1.
$$CH_3CH = CH_2 \xrightarrow{D^+/H_2O} A$$

2.
$$CH_3CH = CH_2 \xrightarrow{H^{\dagger}/D_2O} \rightarrow B$$

3.
$$CH_3CH = CH_2 \xrightarrow{D^+/D_2O} C$$

B. Tryout - 2:

1.
$$(CH_3)_3CH = CH_2 \xrightarrow{BH_3, THF} A$$

H₃C CH₃ 5. Do ►E

C. Try out -3:

Which member hydrolysis faster:-

i)

ii)

iii)

$$H_3C$$
 H
 CH_3
 Or
 H_3C
 CH_3
 CH_3

iv)

D. Try Out 4:

i).

$$H_3C$$
 CH_3
 CH_3
 H_3O^+
 CH_3

ii)

$$H_3C$$
 CH_2
 CH_3
 CH_4
 H_3O^+
 B

iii)

$$H_3C$$

$$H_3C$$

$$H_3O^+ \rightarrow C$$

iv)

$$H_3C$$
O
 CH_3
 CH_3OH
 CH_3OH

v)

vi)

$$H_3C$$
 O
 CH_3
 H_3O^+

$$\begin{array}{c} O \\ \hline \\ O \\ \hline \\ O \\ \end{array} \begin{array}{c} \text{LiAlH}_4 \\ \hline \\ H_3O^+ \end{array} \begin{array}{c} \rightarrow H \\ \end{array}$$

ix)
$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 &$$

$$H_3C$$
 CH_3
 H_3O^+
 K

E. Try Out 5:

$$_{i)}$$
 CH₃CH₂CHO $\xrightarrow{\text{CH}_3\text{MgBr}}$ A

$$H_3C \longrightarrow O \longrightarrow O \longrightarrow B$$

iii)
$$O$$
 $CH_3 + Ph - MgBr \xrightarrow{H_3O^+} C$ iv

v)
$$H_3C$$
 $CH_3 + H_3C$ Mg Br H_3O^+ E $Vi)$

viii)

$$H \longrightarrow O \longrightarrow CH_3 \longrightarrow H_3O^+ \longrightarrow G$$
 $CH_2 \longrightarrow H_3C \longrightarrow Mg$
 $H \longrightarrow G$
 $H \longrightarrow G$

F. Try Out 6:

1.
$$O \xrightarrow{CH_3} \frac{CH_3}{CH_3} A$$

3.
$$H_2C$$
 OH MnO_2 D 4.

- 5. Which of the following compounds give most stable carbocation on dehydration?
 - a) $(CH_3)_3C$ -OH
- b) (CH₃)₃ CH CH₂CH₂OH
- c) $CH_3 CH CH_2CH_3$ OH
- d) CH₃CH₂CH₂CH₂OH
- 6. Dehydration of alcohols

i)
$$\bigcirc$$
 OH ii) \bigcirc OH iv) \bigcirc OH

will be in order

- a) i < ii < iii < iv
- b) i > ii > iii > iv
- c) iii < i < iv
- d) ii < iii < iv < i
- 7. Ethyl alcohol cannot be dried by Na or CaCl₂ why
- 8. Glycerols are highly viscous. why
- 9. Dehydration of alcohols to form alkenes is always carried out with conc. H_2SO_4 and not with conc HCl or HNO_3 why
- 10. Alcohols are soluble in water why
- 11. B,P of alcohols are much higher than those of corresponding alkanes or ethers why
- 12. What is absolute alcohol?
- 13. Glycerol contains 3 OH groups prove it.

G. Try Out 7:

- 1. In between R CO Cl and R CO OH whoch one is better concentred to ester by alcohols?
- 2. Arrange the following in the increasing tendency of ester formation

- 3. Arrange the following in the increasing order of acidic nature:-
- i) CH₃OH, CF₃OH, CCl₃OH
- ii) CH₂ClOH, CHCl₂OH, CCl₃OH
- iii) CH₃CH₂CH₂CH₂OH,

H. Try Out 8:

1.
$$\frac{\operatorname{Conc} H_2 SO_4}{\operatorname{AlCl}_3} \to A$$
2.
$$\frac{\operatorname{CrO}_2 \operatorname{Cl}_2}{\operatorname{OH}} \to B$$
OH

- 3. Why freshly prepared

turns reddish when kept exposed to air and light?

- 4. Give some chemical test for Phenol.
- 5. Why o-nitrophenol has lower boiling point and is less soluble in water than p-nitrophenol?

I. Try Out 9:

Distinction between -

- i. phenol and ethanol
- ii. phenol and benzoic acid
- iii. phenol and cyclohexanol
- iv. phenol and chloroform
- v. methanol and ethanol
- vi. propan -1-ol and propan -2-ol
- vii. butan -1-ol and butan-2-ol
- viii. alcohol and phenol

J. Try Out 10:

1. Which one is more acidic?

$$iv) \qquad \qquad \bigvee_{\mathsf{HO}} \mathsf{Or} \quad \mathsf{O}^{\mathsf{T}} \mathsf{$$

2. When glycerol is heated at 533 k with oxalic acid we get.

$$CaC_2 \xrightarrow{H_2O} A \xrightarrow{dil H_2SO_4} B \xrightarrow{Ni / H_2} C$$

4. When wine is put in air it brought about by –

5. When Oxalic acid is heated with glycerol we get –

6.
$$\underbrace{\frac{\text{NaNO}_2/\text{H}_2\text{SO}_4}{273\text{k}}}_{\text{NH}_2} \text{C} \xrightarrow{\text{KI}} \text{D}$$

7.
$$\begin{array}{c}
OH & O \\
OB & Br_2/NaOH \\
OB & A \\
OB & A
\end{array}$$

9.
$$H_3C$$
 CH_3
 H_2SO_4
 F

Answers

A. Try Out 1:

2. H₃C CH₃

4. H₃C CH₃

ОH

6.
$$\bigcirc$$
 CH $_3$ 7. \bigcirc OH H

B. Try Out 2:

C. Try Out 3:

1.
$$Br$$
 2. Br 3. H_3C CH_3 4. H_2C

D. Try Out 4:

$$1. \ (CH_3)_3C - CH \ (OH) \ CH_3 \\ 2. CH_3CH_2CH_2OH \ and \ CH_3OH \ 3. \ (CH_3)_3C(OH)$$

4.
$$H_3C$$
 OH CH_3 CH_3 $CH_3CH(OH) - CH_2 - CH(OH)CH_3 6. $CH_3CH(OH) - CH_2 - CH(OH)CH_3 = 0$$

CH₃

ΗÓ

E. Try Out 5:

1.
$$H_3C$$
 CH_3
 CH_3

F. Try Out 6:

1.
$$H_3C$$
 CH_3 CH_4 CH_5 CH_5

- 5. a
- 7. Ethanol forms ethoxide and hydrogen gas with Na. and forms an additiue compound with CaCl_2 .
- 8. Glycerol contains 3 OH groups which help in formation of strong intermolecular hydrogen

bond.

- 9. Under acidic conditions, alcohol get protonated, loses H_2O to form carbocation. HCl products Cl^- and H_2SO_4 produces HSO_4^- . HSO_4^- is a weak nucleophile and cannot participate in the nucleophilic substitution. Conc HNO_3 is a powerful oxidizing agent which oxidises alcohol to acid.
- 10. Alcohol forms intermolecular H-bonding with water.

11. Alcohol has intermolecular H-bonding

12. 100% ethyl alcohol is known as absolute alcohol

From the no of moles of HCl formed, we determine the no of OH group in an alcohol

G. Try out 7:

1. RCOCl, as Cl⁻ is a good leaving group.

$$2. \quad \mathsf{H_3C} \overset{\mathsf{CH_3}}{\longrightarrow} \mathsf{OH} \qquad \overset{\mathsf{CH_3}}{\longrightarrow} \mathsf{OH} \qquad \overset{\mathsf{H_3C}}{\longrightarrow} \mathsf{OH} \qquad \mathsf{H_3C} \qquad \mathsf{OH}$$

- 3. i) CH₃OH < CCl₃OH < CF₃OH ii) CH₂ClOH < CHCl₂OH < CCl₃OH
- iii) CH₃CH₂CH(OH)CH₃< (CH₃)₃C(OH) < CH₃CH₂CH₂CH₂OH iv) CH₃CH₂CH₂OH < CH₃CH₂OH < CH₃OH

H. Try out 8:

3. Phenol gets oxidized to p-benzoquinone and with excess phenol to form a red coloured phenoquinone,

Phenoquinone (Red)

4. i) With neutral FeCl₃, forms a violet coloured solution.

$$Ph - OH + FeCl_3 \rightarrow [Fe (O + C_6H_5)_6]^{3-}$$

- ii) With bromine water, a white ppt of 2,4,6 tribromophenol is formed (Red colour disappears).
- iii) Libermann reaction:- Crystals of sodium nitrite and a few drops of conc H_2SO_4 is warmed in a test tube and then drops of phenol is added to the resulting cooled mixture.

At first a red and then a deep blue colourdevelops.

On diluting with water the blue colour changes to red. On adding NaOH, the red colour changes to blue.

5. In o-nitrophenol, intra molecular hydrogen bonding exists as a result the molecules cannot form intermolecular hydrogen bond- boiling pt and solubility decreases.

In p-nitrophenol, inter-molecular hydrogen bonding increases B.P and solubility.

[Use the same concept for O-hydroxyanal, p-hydroxybenzaldehyde]

I. Try Out 9:

i. Phenol gives greenish violet colouration with a neutral solution of FeCl₃ while ethanoldoes not give this test.

 $C_6H_5OH + FeCl_3 \rightarrow \text{greenish violet colour}$

 $C_6H_5OH + FeCl_3 \rightarrow No colour change$

ii. Benzoic acid produces effervescence with sodium bicarbonate but phenol does not.

 $C_6H_5COOH + NaHCO_3 \rightarrow C_6H_5COONa + H_2O + CO_2(g)$

[This proves $Ph - OH < H_2CO_3 < Ph - COOH$ (Acidity)]

- iii. Phenol decolourises bromine water but cyclohexanol does not.
- iv. On heating with aniline and KOH chloroform carbylamine (bad smell) but phenol does not.

 $CHCl_3 + 3KOH + C_6H_5NH_2 \rightarrow C_6H_5NC + 3KCl + 3H_2O$

v. Ethanol gives iodoform test while methanol does not.

EtOH
$$\frac{I_2 + Na_2CO_3}{CH_3 + HCOONa}$$
 CH₃OH $\frac{I_2 + Na_2CO_3}{No}$ No reaction

vi. Propan - 2 ol gives iodoform but propan - 1 – ol does not.

$$H_3C$$
 OH $I_2 + NaOH$ CHI $_3$ CH $_3C$ OH $I_2 + NaOH$ No lodoform

- vii. Butan -2 ol gives iodoform but Butan -1 ol does not.
- viii. Phenol responds to bromine water test but aliphatic alcohol does not.

J. Try Out 10:

- 2. Alhyl alcohol,
- 3. Ethanol,
- 4.Bacteria,
- 5. HCOOH

D:

7.A:

B:

8.

9.