## BOARD MODEL PAPER

## SESSION: 2022-23

## SUBJECT: CHEMISTRY THEORY <br> CLASS-XII

MM: 70
Time: 3 Hours
General Instructions:

## Read the following instructions carefully.

a) There are $\mathbf{3 3}$ questions in this question paper with internal choice.
b) SECTION A consists of 16 multiple-choice questions carrying 1 mark each.
c) SECTION B consists of 5 very short answer questions carrying 2 marks each.
d) SECTION C consists of 7 short answer questions carrying 3 marks each.
e) SECTION D consists of 2 case-based questions carrying 4 marks each.
f) SECTION E consists of 3 long answer questions carrying 5 marks each.
g) All questions are compulsory.
h) Use of log tables and calculator is not allowed.

## SECTION A

The following questions are multiple - choice questions with one correct answer. Each question carries 1 mark. There is no internal choice in this section.
Q1. Which of the following statement is not true about glucose?
(a) It is an aldohexose
(b) On heating with HI it forms n-hexane
(c) It is present in furanose form
(d)It does not give 2,4-D N P test

Q2. The position of Br in the compound $\mathrm{CH}_{3}=\mathrm{CHC}(\mathrm{Br})\left(\mathrm{CH}_{3}\right)_{2}$ can be classified as
(a) Allyl
(b) Aryl
(c) Vinyl
(d) Secondary

Q3. Methylamine react with $\mathrm{HNO}_{2}$ to form
(a) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
(b) $\mathrm{CH}_{3} \mathrm{OH}$
(c) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHC}_{6} \mathrm{H}_{5}$

Q4. Addition of water to alkynes occur in acidic medium in the presence of $\mathrm{Hg}^{2+}$ ions as catalyst. Which of the following product will be formed on addition of water to but-1-yne under these conditions?
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CO}_{2}$
(d) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HCO}$

Q5. The acid formed when propyl magnesium bromide is treated with $\mathrm{CO}_{2}$ is
(a) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
(c) Both (a) \& (b)
(d) None of these

Q6. Which of the following set of ions exhibit specific colours:
(a) $\mathrm{Sc}^{3+}, \mathrm{Ti}^{4+}, \mathrm{Mn}^{3+}$
(b) $\mathrm{Sc}^{3+}, \mathrm{Zn}^{2+}, \mathrm{Ni}^{2+}$
(c) $\mathrm{V}^{3+}, \mathrm{V}^{+}, \mathrm{Fe}^{3+}$
(d) $\mathrm{Ti}^{3+}, \mathrm{Ti}^{4+}, \mathrm{Ni}^{2+}$

Q7. Actinoids exhibit greater number of oxidation states than lanthanoids. The main reason being
(a) More energy difference between $5 \mathrm{f} \& 6 \mathrm{~d}$ than between $4 \mathrm{f} \& 5 \mathrm{f}$ orbitals.
(b) 4 f - orbitals are more diffused than the 5 f - orbitals.
(c) Lesser energy difference between 5 f and 6 d than between 4 f and 5 d orbitals.
(d) More reactive nature of actinoids than the Lanthanoids.

Q8. The rate of a gaseous reaction is given by the expression, rate $=k[A][B]$. If volume of the reaction vessel is suddenly reduced to $1 / 4$ of the initial volume, the reaction rate related to original rate will be
(a) $1 / 16$
(b) $1 / 8$
(c) 8
(d) 16

Q9. Match the following and choose the correct option.

| Column-1 | Column-2 |
| :--- | :--- |
| (i) Half life of I ${ }^{\text {st }}$ order reaction | A. Order $=1$ |
| (ii) $\mathrm{k}[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 2}$ | B. Molecularity $=1$ |
| (iii) $\mathrm{Zero} \mathrm{order} \mathrm{reaction}^{\text {(iv) } \mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}}$ | C. $0.693 / \mathrm{k}$ |
|  | D. $\mathrm{k}=[\mathrm{R}]_{0}-[\mathrm{R}] / \mathrm{t}$ |

(a) (i) -A , (ii) -D , (iii) -C , (iv) -B
(b) (i) - B, (ii) - A, (iii) - C, (iv) - D
(c) (i) - A, (ii) - C, (iii) - D, (iv) - B
(d) (i) - C, (ii) - A, (iii) - D, (iv) - B

Q10. Monochlorination of toluene in sunlight followed by hydrolysis with aq. NaOH gives
(a) o-cresol
(b) m-cresol
(c) 2,4-Dihydroxy toluene
(d) Benzyl alcohol

Q11. Phenol is less acidic than
(a) ethanol
(b) o-nitrophenol
(c) o-methyl phenol
(d) o- methoxy phenol

Q12. The correct IUPAC name for $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NHCH}_{3}$ is
(a) Allyl methylamine
(b) 2- amino-pent-4-ene
(c) 4-amino pent-1-ene
(d) N-methyl prop-2-en-1amine

Q13. Given below are two statements labelled as Assertion (A) and Reason (R) Assertion (A): The two strands of DNA are complementary to each other. Reason (R): The hydrogen bonds are formed between specific base pairs.
(a) Both A and R are true and R is the correct explanation of A .
(b) Both A and R are true and R is not the correct explanation of A .
(c) A is true but R is false.
(d) $A$ is false but $R$ is true.

Q14. Given below are two statements labelled as Assertion (A) and Reason (R)
Assertion (A): Reactivity of ketone is more than aldehyde towards nucleophilic addition.
Reason (R): Carbonyl carbon of ketone is less electrophilic as compared to aldehydes.
(a) Both A and R are true and R is the correct explanation of A .
(b) Both A and R are true and R is not the correct explanation of A .
(c) A is true but R is false.
(d) $A$ is false but $R$ is true.

Q15. Given below are two statements labelled as Assertion (A) and Reason (R)
Assertion (A): In Lucas test, 3 alcohols react immediately.
Reason ( R ): A mixture of anhyd $\mathrm{ZnCl}_{2}$ and conc. HCl is Lucas reagent.
(a) Both A and R are true and R is the correct explanation of A .
(b) Both A and R are true and R is not the correct explanation of A .
(c) A is true but R is false.
(d) $A$ is false but $R$ is true.

Q16. Given below are two statements labelled as Assertion (A) and Reason (R)
Assertion (A) : Electrolysis of NaCl solution gives chlorine at anode instead of $\mathrm{O}_{2}$.
Reason (R) : Formation of oxygen at anode requires over voltage
(a) Both A and R are true and R is the correct explanation of A .
(b) Both A and R are true and R is not the correct explanation of A .
(c) A is true but R is false.
(d) A is false but R is true.

## SECTION B

Q17. The rate constant for first order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given by the following equation: $\log \mathrm{k}=23.6-2 \times 10^{4} \mathrm{k} / \mathrm{T}$
Calculate $\mathrm{E}_{\mathrm{a}}$ for this reaction $\left[\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-}\right.$

> OR

For the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Calculate the rate of reaction if rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ is $1.4 \times 10^{-3} \mathrm{~ms}^{-1}$
Q18 (a) What is the difference between native protein and denatured protein.
(b) Write the name of vitamin responsible for coagulation of blood.

Q19. (a) Why is osmotic pressure of 1 M NaCl higher than 1 M glucose solution?
(b) Blood cells are isotonic with $0.9 \%$ sodium chloride solution. What happens if we place blood cells in a solution containing: i) $1.2 \% \mathrm{NaCl}$ solution ii) $0.4 \% \mathrm{NaCl}$ solution.
Q20. Among all the isomers of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$, identify
(a) the one isomer which is optically active
(b) the one isomer which is highly reactive towards $\mathrm{SN}^{2}$ reaction.

Q21. Convert the following
(a) Benzoic acid to Benzaldehyde
(b) Ethanol to 3- hydroxyl butanal

## SECTION C

Q22. An alkene ' A ' $\left(\mathrm{C}_{5} \mathrm{H}_{10}\right)$ on ozonolysis gives a mixture of two compounds ' B ' and ' C '. Compound ' B ' gives positive Fehling's test and also reacts with iodine and NaOH solution. Compound ' $C$ ' does not give Fehling's test but forms iodoform. Identify ' $A$ ', ' $B$ ' and ' $C$ ' giving suitable explanation and write reactions of ozonolysis and iodoform formation.
Q23. In a coordination entity, the electronic configuration of central metal ion is $\mathrm{t}_{2} \mathrm{~g}^{3} \mathrm{eg}^{1}$
(a) Is the coordination compound high spin or low spin. Identify the nature of ligand.
(b) Draw crystal field splitting diagram for the above complex.

Q24. Conductivity of $2.5 \times 10^{-4} \mathrm{M}$ Methanoic acid is $5.25 \times 10^{-5} \mathrm{Scm}^{-1}$. Calculate its molar conductivity and degree of dissociation. (Given $\lambda^{\circ}{ }_{(\mathrm{H}+)}=349.5 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ and $\lambda^{\circ}{ }_{(\mathrm{HCOO}-)}=50.5$ $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.
Q25. (a) A non-reducing disaccharide ' A ' on hydrolysis with dilute acids gives an equimolar mixture of $\mathrm{D}-(+)$ glucose and $\mathrm{D}-(-)$ fructose.

$$
\mathrm{A}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\rightarrow]{\mathrm{HCl}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Identify A . What is the mixture of $\mathrm{D}-(+)$ glucose and $\mathrm{D}-(-)$ fructose called?
(b) What is the difference between
(i) $\alpha$ - form of glucose and $\beta$-form of glucose.
(ii) Nucleoside and Nucleotide

Q26. (a) Give reason for the following
(i) aryl halides are less reactive towards nucleophilic substitution reaction.
(ii) Thionyl chloride method is preferred for preparing alkyl chloride from alcohol.
(b) Write the major product


Q27. (a) Give equation for the following and write name of the reaction.
(i) Sodium t-butoxide is treated with $\mathrm{CH}_{3} \mathrm{Cl}$.
(ii) Treating phenol with chloroform in the presence of aq. NaOH
(b) How will you distinguish between Phenol and ethanol?

Q28. (a) A first order reaction is $75 \%$ completed in 40 min . Calculate $\mathrm{t} 1 / 2$.
(b) Predict order of reaction
(i)

(ii)


Given $\log 2=0.3010 \log 4=0.6021$

## SECTION D

Read the following paragraph and answer the question that follows:
Q29. In coordination compounds, metals show two types of linkages, primary and secondary. Primary valencies are ionisable and are satisfied by negatively charged ions. Secondary valencies are non-ionisable and are satisfied by neutral or negative ions having lone pair of electrons. Primary valencies are non-directional while secondary valencies decide the shape of the complexes.
(a) When a coordination compound $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ is mixed with $\mathrm{AgNO}_{3}, 2$ moles of AgCl are precipitated. Write structure of the compound.
(b) What is secondary valency of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
(c)- (i) Write formula of Iron (III) hexa cyanido ferrate (II)
(ii) Write the IUPAC name $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CN})(\mathrm{en})_{2}\right]^{2+}$

OR
Write hybridization and magnetic behavior of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
Q30. Read the following paragraph and answer the question that follows:
Amines are usually formed from nitro compounds, halides, amides, imides, etc. They exhibit hydrogen bonding which influences their physical properties. In alkyl amines a combination of electron releasing, steric and hydrogen bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. In aromatic amines, electron releasing and withdrawing groups, respectively increase and decrease their basic character. Influence of the number of hydrogen atoms at nitrogen atom on the type of reactions and nature of products is responsible for identification and distinction between primary, secondary and tertiary amines. Presence of amino group in aromatic ring enhances reactivity of the aromatic amines. Aryl diazonium salts provide advantageous methods for producing aryl halides, cyanides, phenols and arenes by reductive removal of the diazo group.

Answer the following questions:
(a) Arrange the following in the increasing order of their pkb, values in aqueous solution: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(b) Aniline on nitration gives a substantial amount of m-nitroaniline, though amino group is o/p directing. why?
(c) An aromatic compound ' A ' of molecular 'Formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ on treatment with aqueous ammonia and heating forms compound ' B '. Compound B ' on heating with $\mathrm{Br}_{2}$ and aqueous KOH gives a compound ' C ' of molecular formula $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$. Write the structures of $\mathrm{A}, \mathrm{B}$ and C .

OR
Complete the following reactions giving main products:
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{Br}_{2}$ (aq) $\rightarrow$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}^{-} \xrightarrow{(i) \mathrm{HBF}_{4}} \xrightarrow{\left(\text { ii) } \mathrm{NaNO}_{2}-\mathrm{Cu}\right.} \Delta$

## SECTION E

Q31) (a) Represent the cell in which following reaction takes place:
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Ni}^{2+}(0.1 \mathrm{M})----->2 \mathrm{Al}^{3+}(0.01 \mathrm{M})+3 \mathrm{Ni}(\mathrm{s})$
Calculate emf of cell if $\mathrm{E}^{0}$ cell $=1.41 \mathrm{~V}$
(b) How does molar conductivity increase with increase in concentration for strong and weak electrolyte? How can you obtain limiting molar conductivity for weak electrolyte.
(c) Name the cell which:
(i) was used in Apollo Space programme. (ii) is suitable for hearing aids and watches.

Q32) (a) In the ions: $\mathrm{Mn}^{3+}, \mathrm{V}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Ti}^{4+}$
(i) Which ion is most stable in aqueous solution?
(ii) Which ion is colourless?
(iii) Which ion is strongest oxidizing agent?
(iv) Which ion has highest magnetic moment?
(b) Account for the following:
(i) Orange colour of dichromate ion changes to yellow in alkaline medium.
(ii) $\mathrm{E}^{0}\left(\mathrm{Mn}^{2+} / \mathrm{Mn}\right)$ value highly negative as compared to other elements.
(iii) Transition metals show variable oxidation state.

## OR

(a) How does Potassium dichromate reacts with:
(i) Iron(II) ions
(ii) Oxalic acid
(b)Name oxo metal anion of the transition metal in which metal exhibits the oxidation state equal to group number.
(c) Account for the following:
(i) Scandium is regarded as transition element but zinc is not.
(ii) Zr and Hf have almost similar radii.

Q33) (a)Define the following terms: (i) Azeotropes (ii) Molal elevation Constant
(b) A solution containing 15 g Urea (Molar mass $=60 \mathrm{~g} / \mathrm{mol}$ ) per litre of solution in water is isotonic with a solution of glucose in water. Calculate the mass of glucose present in one litre of solution.

## OR

(a) On mixing liquid A and liquid B volume of resulting solution decreases. What type of deviation from Raoult's law is shown by the mixture.
(b) Which colligative property is considered best for determining molar mass of proteins.
(c) A solution of glucose $(\mathrm{M}=180 \mathrm{~g} / \mathrm{mol})$ in water has a boiling point of $100.20^{\circ} \mathrm{C}$. Calculate the freezing point of same solution. Molar constant for water $K_{f}$ and $K_{b}$ are $\mathbf{1 . 8 6} \mathbf{K ~ k g ~ m o l}^{-1}$ and $\mathbf{0 . 5 1 2 K}$ $\mathbf{k g ~ m o l}^{-1}$ respectively

## MARKING SCHEME

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \mathrm{Q} \\
\& \text { No. }
\end{aligned}
\] \& Expected Answers \& Marks \\
\hline 1 \& c \& 1 \\
\hline 2 \& a \& 1 \\
\hline 3 \& b \& 1 \\
\hline 4 \& b \& 1 \\
\hline 5 \& a \& 1 \\
\hline 6 \& c \& 1 \\
\hline 7 \& c \& 1 \\
\hline 8 \& d \& 1 \\
\hline 9 \& d \& 1 \\
\hline 10 \& d \& 1 \\
\hline 11 \& b \& 1 \\
\hline 12 \& d \& 1 \\
\hline 13 \& a \& 1 \\
\hline 14 \& d \& 1 \\
\hline 15 \& b \& 1 \\
\hline 16 \& a \& 1 \\
\hline 17 \& \[
\begin{aligned}
\& \log \mathrm{K}=\log \mathrm{A}-\mathrm{Ea} / 2.303 \mathrm{RT} \\
\& \mathrm{Ea} / 2.303 \mathrm{RT}=2 \times 10^{4} \\
\& \mathrm{Ea}=3.3294 \times 10^{5} \\
\& \text { OR } \\
\& \text { Rate }=-1 / 2 \mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] / \mathrm{dt} \\
\& \text { Rate }=1 / 2 \times 1.4 \times 10^{-3} \\
\& \text { Rate }=7 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1 / 2 \\
\& 1 / 2 \\
\& 1 \\
\& 1 / 2 \\
\& 1 / 2 \\
\& 1
\end{aligned}
\] \\
\hline 18 \& \begin{tabular}{l}
(a) Native protein: Protein found in biological system with unique 3D structure and biological activity. \\
Denatured Protein: Protein in which secondary and tertiary structure are destroyed and it loses its biological activity. \\
(b) Vitamin K
\end{tabular} \& \\
\hline 19 \& \begin{tabular}{l}
(a) The number of particles in \(1 \mathrm{M} \mathrm{NaCl}(\mathrm{i}=2)\) is higher than 1 M Glucose \((\mathrm{i}=1)\) and osmotic pressure depends upon number of particles. \\
(b) i) Blood cells will shrink \\
2) Blood cells will swell
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 / 2+1 / 2
\end{aligned}
\] \\
\hline 20 \& \begin{tabular}{l}
(a) \(\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{C}_{2} \mathrm{H}_{5}\) \\
(b) \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \\
\hline 21 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& 1

1 <br>

\hline 22 \& | $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \quad \mathrm{~B}=\mathrm{CH}_{3} \mathrm{CHO}$ (an aldehyde as it gives Fehling test) $\mathrm{C}=\mathrm{CH}_{3} \mathrm{COCH}_{3}$ ( a ketone as it does not give Fehling test. |
| :--- |
| Both B and C give iodoform test as they contain -COCH3 group | \& 2 <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \&  \& 1 \\
\hline 23 \& \begin{tabular}{l}
(a) High Spin and weak field ligand. \\
(b) Correct diagram
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2+1 / 2 \\
\& 2
\end{aligned}
\] \\
\hline 24 \& \[
\begin{aligned}
\& \Lambda_{m}=\frac{1000 \times \mathrm{K}}{\mathrm{M}} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
\& \begin{aligned}
\& \Lambda_{m}=\frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-4}} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
\&=210 \mathrm{~S} \mathrm{~cm} \\
\& \mathrm{~mol}^{-1}
\end{aligned} \\
\& \begin{aligned}
\& \Lambda_{m}^{0} \mathrm{HCOOH}=\lambda^{0} \mathrm{HCOO}^{-}+\lambda^{0} \mathrm{H}^{+} \\
\&=(50.5+349.5) \mathrm{S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
\&=400 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
\& \alpha=\Lambda_{m} / \Lambda_{m}^{\circ} \\
\&= 210 / 400 \\
\&= 0.525
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
\(1 / 2\) \\
1 \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\)
\end{tabular} \\
\hline 25 \& \begin{tabular}{l}
(a) \(A=\) Sucrose, Invert sugar \\
(b) i) They differ in the orientation of - OH group at anomeric carbon \\
ii) The main difference lies in their molecular composition as Nucleosides contain only sugar and a nitrogenous base whereas Nucleotides contain sugar, nitrogenous base and a phosphate group.
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2+1 / 2 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 26 \& \begin{tabular}{l}
(i) Due to partial double bond character in \(\mathrm{C}-\mathrm{X}\) bond due to resonance. \\
(ii) \(\quad \mathrm{R}-\mathrm{OH}+\mathrm{SOCl}_{2}-->\mathrm{R}-\mathrm{Cl}+\mathrm{SO} 2(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})\), both side products are gases hence we get almost pure alkyl chloride. \\
(iii)
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} \\
\hline 27 \& \begin{tabular}{l}
(a) (i) \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CONa}+\mathrm{CH}_{3} \mathrm{Cl} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO} \mathrm{CH}_{3}\) Williamson's synthesis \\
(ii)
\end{tabular} \& 1

1 <br>
\hline \multicolumn{3}{|c|}{70} <br>
\hline
\end{tabular}

|  | (b) Phenol reacts with neutral $\mathrm{FeCl}_{3}$ to give violet colour. Ethanol reacts with $\mathrm{I}_{2} / \mathrm{NaOH}$ to give yellow ppt of iodoform. | 1 |
| :---: | :---: | :---: |
| 28 | (a) $\begin{aligned} & k=\frac{2.303}{t} \log \frac{[A]_{0}}{[A]} \\ &=\frac{2.303}{40} \log \frac{100}{25} \\ &=\frac{2.303}{40} \log 4 \\ &=\frac{2.303}{40} \times 0.6021 \\ & k=0.0347 \mathrm{~min}^{-1} \\ & t_{1 / 2}=\frac{0.693}{k} \\ & t_{1 / 2}=\frac{0.693}{0.0347 \mathrm{~min}^{-1}} \\ &=20 \mathrm{~min} . \end{aligned}$ <br> (b) (i) first order <br> (ii) zero order | 1 <br> $1 / 2$ <br> $1 / 2$ $1 / 2+1 / 2$ |
| 30 | (a) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ <br> (b) Aniline in acidic medium gets protonated to form anilinium ion which is meta directing. <br> (c) $\mathrm{A}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad \mathrm{B}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2} \quad \mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ <br> OR <br> (a) <br> (b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ | 1 <br> 1 2 <br> 1 <br> 1 |
| 31 | $\begin{aligned} & \text { (a) } 2 A l(s)+3 N i^{2+}(0.1 M) \rightarrow 2 A l^{3+}(0.001 M)+3 N i(s) \\ & \text { Cell Repn: } A l(s)\left\|A l^{3+}(0.01 M) \\| N i^{2+}(0.1 M)\right\| N i(s) \\ & E_{\text {cell }}=E^{0} \text { cell }-\frac{0.0591}{n} \log \frac{\left[A l^{3+}\right]^{2}}{\left[N i^{2+}\right]^{3}} \end{aligned}$ | $1 / 2$ 1 |



BLUE PRINT

| S.N | Name of Chapter | Objectiv <br> e Type Q <br> $(1)$ | Very <br> short <br> answer <br> Q(2) | Short <br> answer <br> Q(3) | Case <br> Based <br> Q.(4) | Long <br> Answer <br> Q(5) | Total <br> marks |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Solution | $2(1)$ | $1(2)$ | $1(3)$ |  |  | 7 |
| 2 | Electrochemistry | $4(1)$ |  |  |  | $1(5)$ | 9 |
| 3 | Chemical kinetics | $2(1)$ | $1(2)$ | $1(3)$ |  |  | 7 |
| 4 | D \&f block elements | $2(1)$ |  |  |  | $1(5)$ | 7 |
| 5 | Coordination Compd. | $1(1)$ | $1(2)$ |  | $1(4)$ |  | 7 |
| 6 |  <br> Haloarenes | $1(1)$ | $1(2)$ | $1(3)$ |  |  | 6 |
| 7 | Alcohols. Phenols, <br> Ethers | $1(1)$ | $1(2)$ | $1(3)$ |  |  | 6 |
| 8 | Aldehyde, <br> ketone,carboxylic acid | $3(1)$ |  |  |  | $1(5)$ | 8 |
| 9 | Amines |  |  | $2(3)$ |  |  | 6 |
| 10 | Biomolecules |  |  | $1(3)$ | $1(4)$ |  | 7 |
|  | Total | $16(1)$ | $5(2)$ | $7(3)$ | $2(4)$ | $3(5)$ | $33(70)$ |

