SET-6

BOARD MODEL PAPER SESSION: 2022-23 SUBJECT: CHEMISTRY THEORY CLASS-XII

MM: 70

General Instructions:

Time:3 Hours

(d) C₆H₅NHC₆H₅

Read the following instructions carefully.

- a) There are **33** questions in this question paper with internal choice.
- b) SECTION A consists of 16 multiple-choice questions carrying 1 mark each.
- c) SECTION B consists of 5 very short answer questions carrying 2 marks each.
- d) SECTION C consists of 7 short answer questions carrying 3 marks each.
- e) SECTION D consists of 2 case-based questions carrying 4 marks each.
- f) SECTION E consists of 3 long answer questions carrying 5 marks each.
- g) All questions are compulsory.
- h) Use of log tables and calculator is not allowed.

SECTION A

The following questions are multiple – choice questions with one correct answer. Each question carries 1 mark. There is no internal choice in this section.

Q1. Which of the following statement is not true about glucose?

- (a) It is an aldohexose (b) On heating with HI it forms n-hexane
- (c) It is present in furanose form (d)It does not give 2,4-D N P test
- Q2. The position of Br in the compound CH₃=CHC(Br)(CH₃)₂ can be classified as

(a) Allyl	(b) Aryl	(c) Vinyl	(d) Secondary
-----------	----------	-----------	---------------

Q3. Methylamine react with HNO₂ to form

(a) CH_3 -O-N=O (b) CH_3OH (c) $(C_2H_5)_2NH$

Q4. Addition of water to alkynes occur in acidic medium in the presence of Hg^{2+} ions as catalyst. Which of the following product will be formed on addition of water to but-1-yne under these conditions?

(a) CH ₃ -CH ₂ CH ₂ CHO	(b) CH ₃ CH ₂ COCH ₃
(c) $CH_3CH_2COOH + CO_2$	(d) CH ₃ COOH + HCO
Q5. The acid formed when propyl n	nagnesium bromide is treated with CO ₂ is
(a) C ₃ H ₇ COOH	(b) C ₂ H ₅ COOH
(c) Both (a) & (b)	(d) None of these
Q6. Which of the following set of ic	ons exhibit specific colours:
(a) Sc^{3+} , Ti^{4+} , Mn^{3+}	(b) Sc^{3+} , Zn^{2+} , Ni^{2+}
(c) V^{3+} , $V2^+$, Fe^{3+}	(d) Ti^{3+} , Ti^{4+} , Ni^{2+}

Q7. Actinoids exhibit greater number of oxidation states than lanthanoids. The main reason being

- (a) More energy difference between 5f & 6d than between 4f & 5f orbitals.
 - (b) 4f orbitals are more diffused than the 5f- orbitals.
 - (c) Lesser energy difference between 5f and 6d than between 4f and 5d orbitals.

(d) More reactive nature of actinoids than the Lanthanoids.

Q8. The rate of a gaseous reaction is given	by the expression, rate = k[A] [B]. If volume of the
reaction vessel is suddenly reduced to 4 of	the initial volume, the reaction rate related to original
(a) $1/16$ (b) $1/8$ (c) 8 (d) 16
O9 Match the following and choose the co	prrect option
Column-1	Column-2
(i) Half life of I st order reaction	A. Order = 1
(i) $k [A]^{1/2} [B]^{1/2}$	B. Molecularity = 1
(iii) Zero order reaction	C. 0.693/k
(iv) NH ₄ NO ₂ \rightarrow N ₂ + 2H ₂ O	D. $k = [R]_0 - [R]/t$
(a) (i) $-A$, (ii) $-D$, (iii) $-C$, (iv) $-B$	(b) (i) $-$ B, (ii) $-$ A, (iii) $-$ C, (iv) $-$ D
(c) (i) $- A$, (ii) $- C$, (iii) $- D$, (iv) $- B$	(d) (i) – C, (ii) – A, (iii) – D, (iv) – B
Q10. Monochlorination of toluene in sunlig	ght followed by hydrolysis with aq. NaOH gives
(a) o-cresol	(b) m-cresol
(c) 2,4 –Dihydroxy toluene	(d) Benzyl alcohol
Q11. Phenol is less acidic than	
(a) ethanol	(b) o-nitrophenol
(c) o-methyl phenol	(d) o- methoxy phenol
Q12. The correct IUPAC name for $CH_2=C_2$	HCH ₂ NHCH ₃ is
(a) Allyl methylamine	(b) 2- amino-pent-4-ene
(c) 4-amino pent-1-ene	(d) N-methyl prop-2-en-1amine
Q13. Given below are two statements labe	lled as Assertion (A) and Reason (R)
Assertion (A): The two strands of D	NA are complementary to each other.
Reason (R): The hydrogen bonds are	formed between specific base pairs.
(a) Both A and R are true and R is th	e correct explanation of A.
(b) Both A and K are true and K is no	of the correct explanation of A.
(c) A is true but K is false. (d) A is false but P is true	
(u) A is faise but K is flue. 0.14 Given below are two statements label	led as Assertion (A) and Reason (\mathbf{R})
Assertion (A): Reactivity of ketone i	s more than aldehyde towards nucleonbilic addition
Reason (R): Carbonyl carbon of keto	one is less electrophilic as compared to aldehydes
(a) Both A and R are true and R is th	e correct explanation of A.
(b) Both A and R are true and R is no	ot the correct explanation of A.
(c) A is true but R is false.	L ·
(d) A is false but R is true.	
Q15. Given below are two statements label	led as Assertion (A) and Reason (R)
Assertion (A): In Lucas test, 3 alcoho	ols react immediately.
Reason (R): A mixture of anhyd ZnC	Cl_2 and conc. HCl is Lucas reagent.
(a) Both A and R are true and R is th	e correct explanation of A.
(b) Both A and R are true and R is no	ot the correct explanation of A.
(c) A is true but R is false.	
(d) A is false but R is true.	
Q16. Given below are two statements label	led as Assertion (A) and Reason (R)
Assertion (A) : Electrolysis of NaCl	solution gives chlorine at anode instead of O_2 .
Reason (R) : Formation of oxygen at	anode requires over voltage

(d) A is false but R is true.

SECTION B

Q17. The rate constant for first order decomposition of N_2O_5 is given by the following equation: $Log k = 23.6 - 2 \times 10^4 k/T$

Calculate E_a for this reaction [R = 8.314JK⁻¹mol⁻

OR

For the reaction

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

Calculate the rate of reaction if rate of disappearance of N_2O_5 (g) is 1.4 x 10⁻³ ms⁻¹

Q18 (a) What is the difference between native protein and denatured protein.

(b) Write the name of vitamin responsible for coagulation of blood.

Q19. (a) Why is osmotic pressure of 1M NaCl higher than 1M glucose solution?

(b) Blood cells are isotonic with 0.9 % sodium chloride solution. What happens if we

place blood cells in a solution containing: i) 1.2 % NaCl solution ii) 0.4% NaCl solution.

- Q20. Among all the isomers of C₄H₉Br, identify
 - (a) the one isomer which is optically active
 - (b) the one isomer which is highly reactive towards SN^2 reaction.
- Q21. Convert the following
 - (a) Benzoic acid to Benzaldehyde
 - (b) Ethanol to 3- hydroxyl butanal

SECTION C

- Q22. An alkene 'A' (C₅H₁₀) on ozonolysis gives a mixture of two compounds 'B' and 'C'. Compound 'B' gives positive Fehling's test and also reacts with iodine and NaOH solution. Compound 'C' does not give Fehling's test but forms iodoform. Identify 'A', 'B' and 'C' giving suitable explanation and write reactions of ozonolysis and iodoform formation.
- Q23. In a coordination entity, the electronic configuration of central metal ion is $t_2g^3eg^1$
 - (a) Is the coordination compound high spin or low spin. Identify the nature of ligand.

(b) Draw crystal field splitting diagram for the above complex.

Q24. Conductivity of 2.5 x 10⁻⁴ M Methanoic acid is 5.25 x 10⁻⁵ Scm⁻¹. Calculate its molar conductivity and degree of dissociation. (Given $\lambda^{\circ}_{(H+)} = 349.5 \text{ Scm}^2 \text{mol}^{-1}$ and $\lambda^{\circ}_{(HCOO-)} = 50.5$ Scm²mol⁻¹.

Q25. (a) A non-reducing disaccharide 'A' on hydrolysis with dilute acids gives an equimolar mixture of D-(+) glucose and D-(-) fructose.

нÈl $A + H_2O \xrightarrow{\rightarrow} C_6H_{12}O_6 + C_6H_{12}O_6$

Identify A. What is the mixture of D- (+) glucose and D- (-) fructose called?

- (b) What is the difference between
- (i) α form of glucose and β -form of glucose.
- (ii) Nucleoside and Nucleotide

Q26. (a) Give reason for the following

- (i) aryl halides are less reactive towards nucleophilic substitution reaction.
- (ii) Thionyl chloride method is preferred for preparing alkyl chloride from alcohol.

Q27. (a) Give equation for the following and write name of the reaction.

- (i) Sodium t-butoxide is treated with CH₃Cl.
- (ii) Treating phenol with chloroform in the presence of aq. NaOH
- (b) How will you distinguish between Phenol and ethanol?
- Q28. (a) A first order reaction is 75% completed in 40 min. Calculate $t_{\frac{1}{2}}$.

Given $\log 2 = 0.3010 \log 4 = 0.6021$

SECTION D

Read the following paragraph and answer the question that follows:

Q29. In coordination compounds, metals show two types of linkages, primary and secondary. Primary valencies are ionisable and are satisfied by negatively charged ions. Secondary valencies are non-ionisable and are satisfied by neutral or negative ions having lone pair of electrons. Primary valencies are non-directional while secondary valencies decide the shape of the complexes.

- (a) When a coordination compound CrCl₃.6H₂O is mixed with AgNO₃, 2 moles of AgCl are precipitated. Write structure of the compound.
- (b) What is secondary valency of $[Co (en)_3]^{3+}$
- (c)- (i) Write formula of Iron (III) hexa cyanido ferrate (II)
 - (ii) Write the IUPAC name $[Co (H_2O) (CN) (en)_2]^{2+}$

OR

Write hybridization and magnetic behavior of [Ni (CN)4]²⁻

Q30. Read the following paragraph and answer the question that follows:

Amines are usually formed from nitro compounds, halides, amides, imides, etc. They exhibit hydrogen bonding which influences their physical properties. In alkyl amines a combination of electron releasing, steric and hydrogen bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. In aromatic amines, electron releasing and withdrawing groups, respectively increase and decrease their basic character. Influence of the number of hydrogen atoms at nitrogen atom on the type of reactions and nature of products is responsible for identification and distinction between primary, secondary and tertiary amines. Presence of amino group in aromatic ring enhances reactivity of the aromatic amines. Aryl diazonium salts provide advantageous methods for producing aryl halides, cyanides, phenols and arenes by reductive removal of the diazo group.

Answer the following questions:

(a) Arrange the following in the increasing order of their pkb, values in aqueous solution: C₂H₅NH₂, (C₂H₅)₂NH, (C₂H₅)₃N

(b) Aniline on nitration gives a substantial amount of m-nitroaniline, though amino group is o/p directing. why?

(c) An aromatic compound 'A' of molecular 'Formula $C_7H_6O_2$ on treatment with aqueous ammonia and heating forms compound 'B'. Compound B' on heating with Br₂ and aqueous KOH gives a compound 'C' of molecular formula C_6H_7N . Write the structures of A, B and C.

OR

Complete the following reactions giving main products:

(a) $C_6H_5NH_2 + Br_2(aq) \rightarrow$ (b) $C_6H_5N_2^+Cl^-\xrightarrow{(i)HBF_4} (ii)NaNO_2-Cu \Delta$

SECTION E

Q31) (a) Represent the cell in which following reaction takes place:

 $2Al(s) + 3Ni^{2+}(0.1M) - 2Al^{3+}(0.01M) + 3Ni(s)$

Calculate emf of cell if E^0 cell = 1.41 V

(b) How does molar conductivity increase with increase in concentration for strong and weak electrolyte? How can you obtain limiting molar conductivity for weak electrolyte.

(c) Name the cell which:

(i) was used in Apollo Space programme. (ii) is suitable for hearing aids and watches.

Q32) (a) In the ions: Mn^{3+} , V^{3+} , Cr^{3+} , Ti^{4+}

- (i) Which ion is most stable in aqueous solution?
- (ii) Which ion is colourless?
- (iii) Which ion is strongest oxidizing agent?
- (iv) Which ion has highest magnetic moment?
- (b) Account for the following:
- (i) Orange colour of dichromate ion changes to yellow in alkaline medium.
- (ii) E^0 (Mn²⁺/Mn) value highly negative as compared to other elements.
- (iii) Transition metals show variable oxidation state.

OR

(a) How does Potassium dichromate reacts with:

(i) Iron(II) ions (ii) Oxalic acid

(b)Name oxo metal anion of the transition metal in which metal exhibits the oxidation state equal to group number.

(c) Account for the following:

(i) Scandium is regarded as transition element but zinc is not.

(ii) Zr and Hf have almost similar radii.

Q33) (a)Define the following terms: (i) Azeotropes (ii) Molal elevation Constant

(b) A solution containing 15 g Urea (Molar mass = 60 g/mol) per litre of solution in water is isotonic with a solution of glucose in water. Calculate the mass of glucose present in one litre of solution.

OR

(a) On mixing liquid A and liquid B volume of resulting solution decreases. What type of deviation from Raoult's law is shown by the mixture.

(b) Which colligative property is considered best for determining molar mass of proteins.

(c) A solution of glucose (M = 180 g/mol) in water has a boiling point of 100.20 0 C. Calculate the freezing point of same solution. Molar constant for water K_f and K_b are 1.86 K kg mol⁻¹ and 0.512K kg mol⁻¹ respectively

No	Expected Answers	Marks
1	c	1
2	a	1
3	b	1
4	b	1
5	a	1
6	c	1
7	c	1
8	d	1
9	d	1
10	d	1
11		
12	u 2	1
10	a d	1
15	b	1
16	a	1
17	$\log K = \log A - Ea/2.303RT$	1/2
	$Ea/2.303RT = 2 \times 10^4$	1/2
	$Ea = 3.3294 \times 10^5$	1
	OR	
	$Rate = -1/2 d[N_2O_5]/dt$	1⁄2
	Rate = $1/2 \times 1.4 \times 10^{-3}$	1/2
10	$Rate = 7 \times 10^{-4} \text{ mol} L^{-1} s^{-1}$	1
18	(a) Native protein: Protein found in biological system with unique 3D	1
	Structure and Diological activity.	
	destroyed and it loses its biological activity	
	(b) Vitamin K	1
19	(a) The number of particles in 1M NaCl(i=2) is higher than 1M	1
	Glucose(i=1) and osmotic pressure depends upon number of particles.	
	(b) i) Blood cells will shrink 2) Blood cells will swell	1/2 +1/2
20	(a) $CH_3CH(Br)C_2H_5$ (b) $CH_3CH_2CH_2CH_2Br$	1 1
21		
		1
	SOCI ₂ Rosenmund's	
	Pd/BaSO.	
	Benzoic Benzoyl Benzaldehyde	
	(b)	
	OH OH	
	CH ₃ CH ₂ OH CH ₃ CHO CH ₃ CHO CH ₃ CHO CH ₃ CHO	
	or PCC/CH ₂ Cl ₂ Aldol Condensation	1
	Ethanol Ethanal 3-hydroxybutanal	
22	A= CH ₃ -CH=C(CH ₃) ₂ B= CH ₃ CHO(an aldehyde as it gives Fehling test) C= CH ₃ COCH ₃ (a ketone as it does not give Fehling test. Both B and C give iodoform test as they contain COCH ₃ group	2
	Bour B and C give louororni lest as they contain -COCH5 group	

$[-1,41,0.0591]_{1-}[10^{-2}]^2$	1/2
$= 1.41 - \frac{1}{6} \log \frac{1}{[10^{-1}]^3}$	
= 1.42V	1
(b) With increase in concentration the molar conductivity	decrease in case
of both strong and weak electrolytes.	1
The limiting molar conductivity (\wedge_m^o) for weak electroly	vte can be
calculated by using Kohlrausch's Law	$\frac{1}{2} + \frac{1}{2}$
(c) i) H ₂ -O ₂ Fuel cell (b) Mercury Cell	72 11/2
$\frac{(1)}{32} = \frac{(1)}{2} + ($	1/2x4
(b) i) In alkaline medium dichromate ion changes to chro	mate ion. 1
ii) Due to stable d5 configuration of Mn^{2+}	
iii) Due to unpaired d electron/ both (n-1)d and ns ele	ectrons are 1
involved in bonding.	1
OR	
(a) i)K ₂ Cr ₂ O ₇ + 14H ⁺ + 6Fe ²⁺ \rightarrow 2Cr ³⁺ + 7H ² O + 6Fe ³⁺	1+1
$11)K_2Cr_2O_7 + 3H_2C_2O_4 + 8H_1 \rightarrow 2Cr_3 + 6CO_2 + 7I_1$ (b) MnO ₄ -	120
(b) \mathbf{i} i	I I
(C) I)Scandium is regarded as a transition element beca filled d-subshell (3d1). Zinc, on the other hand, has a fil	led d-subshell
$(3d^{10})$ in its ground and common oxidation state and is r	ot considered a
transition element.	lot considered a
ii) due to lanthanoid contraction	1
33 (a) (i) Azeotropes: Azeotropes are mixtures of two liqu	ids that have a 1
constant boiling point and cannot be separated by distilla	tion.
(ii) Molal elevation constant: The molal elevation consta	nt (Kb) is defined 1
as the change in boiling point per molal of solute added t	o the solvent.
(b) Mass of urea, $WB = 15$ g Molar mass of urea, $Mb =$	60 g The solution
of urea in water is isotonic to that of glucose solution. So $\pi_{\text{max}} = \pi_{\text{clusters}}$),
$C_{\rm max} RT = C_{\rm Chucose} RT$	1
nurea pr	
$\frac{-\text{uncurve}}{V}$ KI = $\frac{-\text{Outcove}}{V}$ KI	
15 W _{Chucoso}	
$=\frac{1}{60}=-0.00000000000000000000000000000000000$	
15×18	
$= W_{Glucose} = \frac{10 \times 10}{60}$	
45 ~	1+1
= 45 g	
OR	
(a) Negative Deviation	1
(b) Osmouc pressure (c) $\Delta Tb = 100.20^{\circ}C = 100.^{\circ}C = 0.20.^{\circ}C$	1
$\wedge Th = K_h m$	1
$m = \Lambda Tb / K_b$	1/2
$m = 0.20 \text{ K/} 0.512 \text{ Kkg mol}^{-1} = 0.39 \text{ mol kg}^{-1}$	1/2
$\Delta T_{\rm f} = K_{\rm f}.m$	
$\Delta T_{f} = 1.86 \text{ K kg mol}^{-1} \text{ x } 0.39 \text{ mol kg}^{-1}$	1/2
$= 0.725 \text{ K}^{-1}$	
$T_f = T^0_f - \Delta T_f$	1/2
= 273.15 K - 0.725 K	$\frac{1}{2}$
= 272.425 K	1/2

		BI	LUE PRIN	T			
S.N	Name of Chapter	Objectiv e Type Q (1)	Very short answer Q(2)	Short answer Q(3)	Case Based Q.(4)	Long Answer Q(5)	Total marks
1	Solution	2(1)	1(2)	1(3)			7
2	Electrochemistry	4(1)				1(5)	9
3	Chemical kinetics	2(1)	1(2)	1(3)			7
1	D &f block elements	2(1)				1(5)	7
5	Coordination Compd.	1(1)	1(2)		1(4)		7
5	Haloalkanes & Haloarenes	1(1)	1(2)	1(3)			6
7	Alcohols. Phenols, Ethers	1(1)	1(2)	1(3)			6
3	Aldehyde, ketone,carboxylic acid	3(1)				1(5)	8
)	Amines			2(3)			6
10	Biomolecules			1(3)	1(4)		7
	Total	16(1)	5(2)	7(3)	2(4)	3(5)	33(70)