- 93. A mixture of N₂ and H₂ is caused to react in a closed container to form NH₃. The reaction ceases before either reactant has been totally consumed. At this stage, 2.0 moles each of N₂, H₂ and NH₃ are present. The moles of N₂ and H₂ present originally were, respectively,
 - (a) 4 and 4 moles
 - (b) 3 and 5 moles
 - (c) 3 and 4 moles
 - (d) 4 and 5 moles
- **94.** An ore contains 2.296% of the mineral argentite, Ag₂S, by mass. How many grams of this ore would have to be

processed in order to obtain 1.00 g of pure solid silver? (Ag = 108)

- (a) 1.148 g
- (b) 0.026 g

(c) 50 g

- (d) 2.296 g
- 95. A power company burns approximately 500 tons of coal per day to produce electricity. If the sulphur content of the coal is 1.5%, by mass, how many tons SO₂ are dumped into the atmosphere, every day?
 - (a) 15.0
 - (b) 7.5
 - (c) 30.0
 - (d) 18.75

Limiting Reagent Based

- **96.** An amount of 1.0×10^{-3} moles of Ag^+ and 1.0×10^{-3} moles of CrO_4^{2-} reacts together to form solid Ag_2CrO_4 . What is the amount of Ag_2CrO_4 formed? (Ag = 108, Cr = 52)
 - (a) 0.332 g
- (b) 0.166 g

(c) 332 g

- (d) 166 g
- 97. An amount of 0.3 mole of SrCl₂ is mixed with 0.2 mole of K₃PO₄. The maximum moles of KCl which may form is
 - (a) 0.6

(b) 0.5

(c) 0.3

- (d) 0.1
- **98.** Large quantities of ammonia are burned in the presence of a platinum catalyst to give nitric oxide, as the first step in the preparation of nitric acid.

$$NH_3(g) + O_2(g) \xrightarrow{Pt} NO(g) + H_2O(g)$$

(Unbalanced)

Suppose a vessel contains 0.12 moles NH₃ and 0.14 moles O₂. How many moles of NO may be obtained?

(a) 0.120

(b) 0.112

(c) 0.140

- (d) 0.070
- 99. Equal masses of iron and sulphur are heated together to form FeS. What fraction of the original mass of excess reactant is left unreacted? (Fe = 56, S = 32)
 - (a) 0.22

(b) 0.43

(c) 0.86

- (d) 0.57
- 100. Hydrogen cyanide, HCN, is prepared from ammonia, air and natural gas (CH₄) by the following process.

$$2NH_3(g) + 3O_2(g) + 2CH_4(g) \xrightarrow{Pt}$$

 $2HCN(g) + 6H_2O(g)$

If a reaction vessel contains 11.5 g NH₃, 10.0 g O₂, and 10.5 g CH₄, what is the maximum mass, in grams, of hydrogen cyanide that could be made, assuming the reaction goes to completion?

- (a) 18.26 g
- (b) 5.625 g
- (c) 17.72 g
- (d) 16.875 g