- 119. A volume of 200 ml of oxygen is added to 100 ml of a mixture containing CS₂ vapour and CO, and the total mixture is burnt. After combustion, the volume of the entire mixture is 245 ml. Calculate the volume of the oxygen that remains
 - (a) 67.5 ml
 - (b) 125.0 ml
 - (c) 200.0 ml
 - (d) 100.0 ml
- 120. A volume of 10 ml hydrogen requires 25 ml air for complete combustion. The volume per cent of N_2 in air is
 - (a) 20%
 - (b) 80%
 - (c) 79%
 - (d) 5%
- **121.** A volume of 10 ml of gaseous C₄H_x exactly requires 55 ml O₂ for complete combustion. The value of 'x' is
 - (a) 4
 - (b) 6
 - (c) 8
 - (d) 10
- 122. When 500 ml CO₂ gas is passed through red hot charcoal, the volume becomes 700 ml. The volume of CO₂ converted into CO is
 - (a) 200 ml
 - (b) 300 ml
 - (c) 350 ml
 - (d) 500 ml
- 123. The percentage by volume of C_3H_8 in a mixture of C_3H_8 , CH_4 and CO is 36.5. The volume of CO_2 produced when 100 ml of the mixture is burnt in excess of O_2 , is
 - (a) 153 ml
 - (b) 173 ml
 - (c) 193 ml
 - (d) 213 ml
- **124.** A volume of 1 ml of a gaseous aliphatic compound $C_nH_{3n}O_m$ is completely burnt in an excess of oxygen. The contraction in volume (in ml) is

(a)
$$\left(1 + \frac{1}{2}n - \frac{3}{4}m\right)$$

(b)
$$\left(1 + \frac{3}{4}n - \frac{1}{4}m\right)$$

(c)
$$\left(1 - \frac{1}{2}n - \frac{3}{4}m\right)$$

(d)
$$\left(1 + \frac{3}{4}n - \frac{1}{2}m\right)$$

- 125. The explosion of a mixture consisting of one volume of a gas being studied and one volume of H_2 yielded one volume water vapour and one volume of N_2 . The formula of gas being studied, is
 - (a) NO

(b) NO,

(c) N₂O

- (d) N_2O_3
- 126. A gaseous alkane is exploded with oxygen. The volume of O₂ for complete combustion to the volume of CO₂ formed is in 7:4 ratio. The molecular formula of alkane is
 - (a) CH_4

(b) C_3H_8

(c) C_2H_6

- (d) C_4H_{10}
- 127. A volume V of a gaseous hydrocarbon was exploded with an excess of oxygen. The observed contraction was 2.5V, and on treatment with potash, there was a further contraction of 2V. What is the molecular formula of the hydrocarbon?
 - (a) C_2H_6

(b) C_3H_6

(c) C_4H_{12}

- (d) C_2H_4
- 128. A volume of 10 ml chlorine gas combines with 25 ml of oxygen gas to form 10 ml of a gaseous compound. If all the volumes are measured at the same pressure and temperature, what is the molecular formula of compound formed?
 - (a) Cl₂O
 - (b) Cl_2O_7
 - (c) ClO₂
 - (d) Cl_2O_5