- 67. A mixture of formic acid and oxalic acid is heated with conc. H₂SO₄. The gaseous product is passed into KOH solution where the volume decreased by 1/6th. What was the molecular proportion of the organic acids, formic and oxalic acid, in the mixture?
 - (a) 1:4

(b) 4:1

(c) 1:5

- (d) 5:1
- 68. A volume of 50 ml of a gas mixed with 70 ml of oxygen gave after explosion 50 ml of CO₂ and after absorption by KOH, 45 ml of oxygen are left. What is the molecular formula of the gas?
 - (a) CH₄
 - (b) C₂H₄
 - (c) CO
 - (d) C_2H_2
- 69. A human patient suffering from a duodenal ulcer may show a concentration of HCl of 80×10^{-3} molar in gastric juice. If his stomach receives 3 l of gastric juice per day, how much medicine (antacid syrup) containing 2.6 g of Al(OH)₃ per 100 ml must he consumes per day to neutralize the acid?
 - (a) 27 ml
 - (b) 80 ml
 - (c) 240 ml
 - (d) 120 ml
- 70. When V ml of 2.2 M H₂SO₄ solution is mixed with 10V ml of water, the volume contraction of 2% takes place. The molarity of diluted solution is
 - (a) 0.2 M
 - (b) 0.204 M
 - (c) 0.196 M
 - (d) 0.224 M
- 71. A quantity of 23.6 g of succinic acid is dissolved in 500 ml of 0.1 M acetic acid solution. Assuming that neither acid is dissociated in solution, calculate the molarity of '-COOH' in the solution.

- (a) 0.3 M
- (b) 0.5 M
- (c) 0.9 M
- (d) 0.8 M
- 72. Chlorofluorocarbons such as CCl_3F (M=137.5) and CCl_2F_2 (M=121) have been linked to ozone depletion in Antarctica. As of 2004, these gases were found in 275 and 605 parts per trillion (10¹²), by volume. What are the concentrations of these gases under conditions typical of Antarctica stratosphere (200 K and 0.08 atm)? (R = 0.08 l-atm/K-mol)
 - (a) $[CCl_3F] = 1.375 \times 10^{-12} \text{ mol } l^{-1},$ $[CCl_2F_2] = 3.025 \times 10^{-12} \text{ mol } l^{-1}$
 - (b) $[CCl_3F] = 2.75 \times 10^{-14} \text{ mol } l^{-1}, [CCl_2F_2]$ = $6.05 \times 10^{-14} \text{ mol } l^{-1}$
 - (c) $[CCl_3F] = 2.75 \times 10^{-10} \text{ mol } 1^{-1}, [CCl_2F_2]$ = $6.05 \times 10^{-10} \text{ mol } 1^{-1}$
 - (d) [CCl₃F] = $1.375 \times 10^{-13} \text{ mol } 1^{-1}$, [CCl₂F₂] = $3.025 \times 10^{-12} \text{ mol } 1^{-1}$
- 73. A quantity of 1 kg of 2m urea solution is mixed with 2 kg of 4 M urea solution. The molality of the resulting solution is
 - (a) 3.33 M
 - (b) 10 M
 - (c) 3.29 M
 - (d) 5 m
- **74.** A quantity of 1 kg of 1 M glucose solution is diluted to 5 kg. The molality of the diluted solution should be
 - (a) 0.2 M
 - (b) 0.02 M
 - (c) 0.207 M
 - (d) 0.175 M
- **75.** A quantity of 500 g of a urea solution of mole fraction 0.2 is diluted to 1500 g. The mole fraction of solute in the diluted solution is
 - (a) 0.05
 - (b) 0.067
 - (c) 0.6
 - (d) 0.1