Comprehension VI

Figure shows a scheme, for concentrating a dilute solution of NaOH.

- **16.** How much water is evaporated per hour?
 - (a) 5000 kg
- (b) 500 kg
- (c) 19,500 kg
- (d) 20,000 kg
- **17.** How much concentrated solution obtained per hour?
 - (a) 5000 kg
- (b) 500 kg
- (c) 19,500 kg
- (d) 20,000 kg
- 18. How much slurry obtained per hour?
 - (a) 5000 kg
 - (b) 500 kg
 - (c) 19,500 kg
 - (d) 20,000 kg

Comprehension VII

A fuel mixture used in the early days of rocketry is composed of two liquids, hydrazine (N_2H_4) and dinitrogen tetraoxide (N_2O_4) , which ignite on contact to form nitrogen gas and water vapour. The yield of N_2 gas is found to be less than its expected yield because some nitric oxide (NO) is also formed by a parallel reaction between the reactants. In an experiment 96 g N_2H_4 and 184 g N_2O_4 are taken. It is found that 18 g NO is formed.

- 19. The limiting reagent is
 - (a) N_2H_4
 - (b) N_2O_4
 - (c) both the reactants will be used up completely
 - (d) cannot predict, because the reactants are giving more than one reaction
- 20. What is the highest percentage yield of N_2 that can be expected? The theoretical yield is the quantity of N_2 formed in the absence of parallel reaction.
 - (a) 96.67%
- (b) 90%

(c) 85.7%

(d) 100%

- **21.** What is the total mass of water vapour formed?
 - (a) 262 g
 - (b) 140.2 g
 - (c) 108 g
 - (d) 72 g