## **Comprehension VIII**

A quantity of 1.5 g of brass containing Cu and Zn reacts with 3 M-HNO<sub>3</sub> solution, the following reactions (unbalanced) take place:

$$Cu(s) + HNO_3(aq) \rightarrow Cu^{2+}(aq) + NO_3(g) + H_3O(l)$$

$$Zn(s) + H^{+}(aq) + NO_{3}^{-}(aq) \rightarrow NH_{4}^{+}(aq) + Zn^{2+}(aq) + H_{2}O(l)$$

The liberated NO<sub>2</sub>(g) was found to be 1.04 l at 25°C and 1 atm.

- **22.** What is the percentage of copper in brass?
  - (a) 80%

(b) 90%

(c) 85%

- (d) 10%
- 23. How many millilitres of 3 M-HNO<sub>3</sub> will be required for complete reaction with brass?
  - (a) 9.56 ml
- (b) 14.34 ml
- (c) 6.37 ml
- (d) 19.12 ml

- **24.** How many grams of ammonium nitrate will be formed in the reaction?
  - (a) 0.046 g
  - (b) 0.183 g
  - (c) 0.092 g
  - (d) 0.55 g

## **Comprehension IX**

Crude calcium carbide is made in an electric furnace by the reaction:

$$CaO + 3C \rightarrow CaC_2 + CO\uparrow$$

The product contains 80% CaC<sub>2</sub> and 20% unreacted CaO.

- **25.** How much CaO is to be added to the furnace charge for each 1280 kg of pure CaC<sub>2</sub> produced?
  - (a) 1120 kg
- (b) 1440 kg
- (c) 1152 kg
- (d) 1344 kg
- **26.** How much CaO is to be added to the furnace charge for each 1280 kg of crude product?
  - (a) 1120 kg
- (b) 1440 kg
- (c) 1152 kg
- (d) 1344 kg

- 27. What will be the volume of CO gas evolved, measured at 0°C and 1 atm, when 1280 kg of crude product is formed?
  - (a)  $448 \text{ m}^3$
  - (b)  $358.4 \text{ m}^3$
  - (c)  $537.6 \text{ m}^3$
  - (d)  $89.6 \text{ m}^3$

## **Comprehension X**

A certain metal sulphide,  $MS_n$  (where n is a small integer), is widely used as a high temperature lubricant. The substance is prepared by reaction of the metal pentachloride ( $MCl_5$ ) with sodium sulphide ( $Na_2S$ ). Heating the metal sulphide to  $700^{\circ}C$  in air gives the metal trioxide ( $MO_3$ ) and sulphur dioxide ( $SO_2$ ), which react with  $Fe^{3+}$  ion under aqueous acidic conditions to give sulphate ion. Addition of aqueous  $BaCl_2$  then forms a precipitate of  $BaSO_4$ . The chemical reactions (unbalanced) concerned are