4. Match the following

Column I	Column II
(A) 2 mol octane required O ₂ for completely combustion	(P) 1100 g
(B) 300 g carbon combines with 800 g of oxygen to produce CO ₂	(Q) 11.2 L at 0°C and 1 atom
(C) 1 g-atom of Nitrogen	(R) 25 mol
(D) 124 g of NO ₃ -ion	(S) 48.16×10^{23} atoms (T) 800 g

5. When 1 mole of carbon reacts with 1 mole of oxygen producing 1 mole of CO₂, 100 kcal heat is released and when 1 mole of carbon reacts with 0.5 mole of oxygen producing 1 mole of CO, 25 kcal heat is released. Column – I represents some amounts of carbon and oxygen which may react to form CO or CO₂ or both, in such a way that none of the reactant remain left, and Column – II represents the heat released. Match the amounts with the corresponding heat released.

Column I	Column II
(A) 36 g C and 80 g O ₂	(P) 125 kcal
(B) 12 g C and 24 g O ₂	(Q) 225 kcal
(C) 24 g C and 48 g O ₂	(R) 150 kcal
(D) 36 g C and 64 g O ₂	(S) 62.5 kcal

6. Match the following

Column I	Column II
(A) Amount of O ₂ for complete combustion of 2 mole octane	(P) 1100 g
(B) Amount of CO ₂ produced when 300 g carbon combines with 800 g of oxygen	(Q) 560 L of 273 K and 1 atm
(C) Amount of NaOH needed for complete neutralization of 1225 g $\rm H_2SO_4$	(R) 25 mole
(D) Amount of N ₂ H ₄ formed from 50 mole H ₂	(S) 3.01×10^{25} atoms
	(T) 800 g

7. Match the following

Column I	Column II
(A) N_2 (3.5 g) +	(P) First reactant
$H_2 (1.0 g) \rightarrow$	is the limiting
NH_3	reagent
(B) $H_2(1.0 g) + O_2$	(Q) Second reactant
$(4.0 \text{ g}) \rightarrow \text{H}_2\text{O}$	is the limiting
	reagent
(C) $S(4.0 g) + O_2$	(R) Stoichiometric
$(6.0 \text{ g}) \rightarrow \text{SO}_3$	amounts of
	reactants
(D) Fe $(11.2 g) +$	(S) Mass of reactants
$O_2(3.2 \text{ g}) \rightarrow$	> mass of
Fe_2O_3	product formed
	·

8. Match the following

Column I Compound	Column II Relative amounts of products, on complete combustion
(A) CH ₄	(P) mole of CO ₂ < mole of H ₂ O
(B) C_2H_4	(Q) mole of $CO_2 = mole$ of H_2O
(C) C_2H_2	(R) mole of $CO_2 > mole$ of H_2O
(D) C ₃ H ₈	(S) mass of $CO_2 > mass$ of H_2O