4. Match the following | Column I | Column II | |---|--| | (A) 2 mol octane required O ₂ for completely combustion | (P) 1100 g | | (B) 300 g carbon
combines
with 800 g
of oxygen to
produce CO ₂ | (Q) 11.2 L at 0°C
and 1 atom | | (C) 1 g-atom of
Nitrogen | (R) 25 mol | | (D) 124 g of NO ₃ -ion | (S) 48.16×10^{23}
atoms
(T) 800 g | 5. When 1 mole of carbon reacts with 1 mole of oxygen producing 1 mole of CO₂, 100 kcal heat is released and when 1 mole of carbon reacts with 0.5 mole of oxygen producing 1 mole of CO, 25 kcal heat is released. Column – I represents some amounts of carbon and oxygen which may react to form CO or CO₂ or both, in such a way that none of the reactant remain left, and Column – II represents the heat released. Match the amounts with the corresponding heat released. | Column I | Column II | |------------------------------------|---------------| | (A) 36 g C and 80 g O ₂ | (P) 125 kcal | | (B) 12 g C and 24 g O ₂ | (Q) 225 kcal | | (C) 24 g C and 48 g O ₂ | (R) 150 kcal | | (D) 36 g C and 64 g O ₂ | (S) 62.5 kcal | ## 6. Match the following | Column I | Column II | |--|---------------------------------| | (A) Amount of O ₂ for complete combustion of 2 mole octane | (P) 1100 g | | (B) Amount of CO ₂ produced when 300 g carbon combines with 800 g of oxygen | (Q) 560 L of 273 K and 1 atm | | (C) Amount of NaOH needed for complete neutralization of 1225 g $\rm H_2SO_4$ | (R) 25 mole | | (D) Amount of N ₂ H ₄ formed from 50 mole H ₂ | (S) 3.01×10^{25} atoms | | | (T) 800 g | ## 7. Match the following | Column I | Column II | |--|-----------------------| | (A) N_2 (3.5 g) + | (P) First reactant | | $H_2 (1.0 g) \rightarrow$ | is the limiting | | NH_3 | reagent | | (B) $H_2(1.0 g) + O_2$ | (Q) Second reactant | | $(4.0 \text{ g}) \rightarrow \text{H}_2\text{O}$ | is the limiting | | | reagent | | (C) $S(4.0 g) + O_2$ | (R) Stoichiometric | | $(6.0 \text{ g}) \rightarrow \text{SO}_3$ | amounts of | | | reactants | | (D) Fe $(11.2 g) +$ | (S) Mass of reactants | | $O_2(3.2 \text{ g}) \rightarrow$ | > mass of | | Fe_2O_3 | product formed | | | · | ## 8. Match the following | Column I
Compound | Column II Relative amounts of products, on complete combustion | |-----------------------------------|--| | (A) CH ₄ | (P) mole of CO ₂ < mole of H ₂ O | | (B) C_2H_4 | (Q) mole of $CO_2 = mole$
of H_2O | | (C) C_2H_2 | (R) mole of $CO_2 > mole$
of H_2O | | (D) C ₃ H ₈ | (S) mass of $CO_2 > mass$
of H_2O |