- 25. The density of a DNA sample is 1.1g/ml and its molar mass determined by cryoscopic method was found to be 6×10^8 g/mole. What is the volume occupied by one DNA molecule? ($N_A = 6 \times 10^{23}$)
 - (a) 5.45×10^8 ml
 - (b) 1.83×10^{-9} ml
 - (c) 9.06×10^{-16} ml
 - (d) 1.09×10^{-13} ml
- 26. How many atoms do mercury vapour molecules consist of if the density of mercury vapour relative to air is 6.92? The average mass of air is 29 g per mole. (Hg = 200)
 - (a) 1
 - (b) 2
 - (c) 4
 - (d) Infinite
- 27. Vapour density of a volatile substance is $1.2 (C_2H_6 = 1)$. Its molecular mass would be
 - (a) 1.2
 - (b) 2.4
 - (c) 36
 - (d) 72
- **28.** A compound contains 7 carbon atoms, 2 oxygen atoms and 9.96×10^{-24} g of other elements. The molecular mass of compound is $(N_A = 6 \times 10^{23})$
 - (a) 122
 - (b) 116
 - (c) 148
 - (d) 154
- 29. If the mass of neutron is doubled and that of proton is halved, the molecular mass of H₂O containing only H¹ and O¹⁶ atoms, will
 - (a) increase by about 25%
 - (b) decrease by about 25%
 - (c) increase by about 14%
 - (d) decrease by about 14%

- **30.** Out of 1.0 g dioxygen, 1.0 g atomic oxygen and 1.0 g ozone, the maximum number of oxygen atoms are contained in
 - (a) 1.0 g of atomic oxygen
 - (b) 1.0 g of ozone
 - (c) 1.0 g of oxygen gas
 - (d) All contain the same number of atoms
- 31. Total number of electrons present in 4.4 g oxalate ion $(C_2O_4^{2-})$ is
 - (a) $0.05N_{A}$
 - (b) $2.3N_{A}$
 - (c) $2.2N_{A}$
 - (d) $2.1N_{A}$
- 32. Total number of valence electrons present in 6.4 g peroxides ion (O_2^{2-}) is
 - (a) $0.2N_{\rm A}$
- (b) $3.2N_{A}$

(c) $3.6N_{\rm A}$

- (d) $2.8N_{A}$
- 33. The number of F^- ions in 4.2 g AlF₃ is (Al = 27, F = 19)
 - (a) 0.05
 - (b) 9.03×10^{22}
 - (c) 3.01×10^{22}
 - (d) 0.15
- 34. A quantity of 13.5 g of aluminium when changes to Al^{3+} ion in solution, will lose (Al = 27)
 - (a) 18.0×10^{23} electrons
 - (b) 6.02×10^{23} electrons
 - (c) 3.01×10^{23} electrons
 - (d) 9.1×10^{23} electrons
- 35. If an iodized salt contains 1% of KI and a person takes 2 g of the salt every day, the iodine ions going into his body everyday would be approximately (K = 39, I = 127)
 - (a) 7.2×10^{21}
- (b) 7.2×10^{19}
- (c) 3.6×10^{21}
- (d) 9.5×10^{19}