9. Match the following

Column I Masses of Column II different components Observation (P) Metal is the (A) Metal halide → limiting reagent $Metal \rightarrow$ (B) (Q) Halogen is the Metal halide → limiting reagent Halogen → (O) Metal/halogen → (R) Metal and halogen are in stoichiometric amounts Metal → (D) (S) Metal is Metal halide → exhibiting a particular valency in the chloride formation. $Metal \rightarrow$ (T) Metal is exhibiting variable valency in the chloride formation

10. Match the following

Column I	Column II
(A) 200 ml of a mixture of 50% H ₂ , 40% CH ₄ and 10% CO ₂ would evolve. The volume of CO ₂ after combustion	(P) 10 ml
(B) 100 ml of acetylene (C_2H_2) required oxygen for complete combustion	(Q) 45 ml
(C) 10 ml of hydrogen sulphide (H ₂ S) requires chlorine for complete decomposition of NTP	(R) 250 ml
(D) When a mixture of 300 ml of CO and 30 ml of O ₂ was exploded, the volume of gases produced due to explosion	(S) 100 ml

11. Match the following

Section I (Gaseous Organic compounds)	Section II (Volume of O ₂ needed for complete combustion per volume of compound)	
(A) $C_x H_{2x+2}$	(P) $\frac{3x+1}{2}$	
(B) $C_xH_{2x+2}O$	•	
(C) $C_x H_{2x+3} N$	$(\mathbf{R}) \ \frac{3(2x+1)}{4}$	
(D) $C_x H_{2x+2} S$	$(S) \ \frac{3(x+1)}{2}$	

12. Column I consists of some decomposition reactions and Column II consists of some absorbent for the gases evolved in the reactions given in Column I. Match the gases evolved in Column I with the proper absorbent in Column II.

Column I	Column II
(A) $\text{Li}_2\text{CO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + \text{CO}_2 \uparrow$	(P) CaO
(B) $CaC_2O_4 \xrightarrow{\Delta} CaO + CO\uparrow + CO_2\uparrow$	(Q) Ammoniacal CuCl
(C) HCOONa $\xrightarrow{\Delta}$ NaOH(s) + CO \uparrow	$(R) P_4O_{10}$
(D) $2KHSO_3 \xrightarrow{\Delta} K_2SO_4 + H_2O\uparrow + SO_2\uparrow$	(S) NaOH Solution