Calculation of Mole

- **36.** Dopamine is a neurotransmitter, a molecule that serves to transmit message in the brain. The chemical formula of dopamine is C₈H₁₁O₂N. How many moles are there in 1 g of dopamine?
 - (a) 0.00654
 - (b) 153
 - (c) 0.0654
 - (d) None of these
- 37. Ethanol is the substance commonly called alcohol. The density of liquid alcohol is 0.8 g/ml at 293 K. If 1.2 moles of ethanol is needed for a particular experiment, what volume of ethanol should be measured out?
 - (a) 55.2 ml
- (b) 57.5 ml

(c) 69 ml

- (d) 47.9 ml
- **38.** The volume of one mole of water at 277 K is 18 ml. One ml of water contains 20 drops. The number of molecules in one drop of water will be $(N_A = 6 \times 10^{23})$
 - (a) 1.07×10^{21}
 - (b) 1.67×10^{21}
 - (c) 2.67×10^{21}
 - (d) 1.67×10^{20}
- 39. A given mixture consists only of pure substance X and pure substance Y. The total mass of the mixture is 3.72 g. The total number of moles is 0.06. If the mass of one mole of Y is 48 g and there is 0.02 mole of X in the mixture, what is the mass of one mole of X?
 - (a) 90 g

(b) 75 g

(c) 45 g

- (d) 180 g
- 40. Number of gas molecules present in 1 ml of gas at 0°C and 1 atm is called Loschmidt number. Its value is about
 - (a) 2.7×10^{19}
- (b) 6×10^{23}
- (c) 2.7×10^{22}
- (d) 1.3×10^{28}
- **41.** A quantity of 0.25 g of a substance when vaporized displaced 50 cm³ of air at 0°C

- and 1 atm. The gram molecular mass of the substance will be
- (a) 50 g

- (b) 100 g
- (c) 112 g

- (d) 127.5 g
- **42.** An amount of 6 moles of Cl-atoms at STP occupies a volume of
 - (a) 134.41
- (b) 67.21
- (c) 68.11

- (d) 136.21
- **43.** While resting, the average 70 kg human male consumes 16.628 l of oxygen per hour at 27°C and 100 kPa. How many moles of oxygen are consumed by the 70 kg man while resting for 1hour?
 - (a) 0.67

(b) 66.7

- (c) 666.7
- (d) 67.5
- 44. One molecule of haemoglobin will combine with four molecules of oxygen. If 1.0 g of haemoglobin combines with 1.642 ml of oxygen at body temperature (27°C) and a pressure of 760 torr, what is the molar mass of haemoglobin?
 - (a) 6,00,000
- (b) 1,50,000
- (c) 15,000
- (d) 60,000
- **45.** A quantity of 2.0 g of a triatomic gaseous element was found to occupy a volume of 448 ml at 76 cm of Hg and 273 K. The mass of its each atom is
 - (a) 100 amu
 - (b) 5.53×10^{-23} g
 - (c) 33.3 g
 - (d) 5.53 amu
- **46.** Most abundant element dissolved in sea water is chlorine at a concentration of 19 g/kg of sea water. The volume of earth's ocean is 1.4×10^{21} l. How many g-atoms of chlorine are potentially available from the oceans? Density of sea water is 1 g/ml. $(N_A = 6 \times 10^{23})$
 - (a) 7.5×10^{20}
- (b) 27×10^{21}
- (c) 27×10^{24}
- (d) 7.5×10^{19}