- **47.** From 2 mg calcium, 1.2×10^{19} atoms are removed. The number of g-atoms of calcium left is (Ca = 40)
 - (a) 5×10^{-5}
 - (b) 2×10^{-5}
 - (c) 3×10^{-5}
 - (d) 5×10^{-6}
- **48.** The number of g-molecules of oxygen in 6.023×10^{24} CO molecules is
 - (a) 1 g-molecule
 - (b) 0.5 g-molecule
 - (c) 5 g-molecules
 - (d) 10 g-molecules
- **49.** Equal masses of oxygen, hydrogen and methane are taken in identical conditions.

What is the ratio of the volumes of the gases under identical conditions?

- (a) 16:1:8
- (b) 1:16:2
- (c) 1:16:8
- (d) 2:16:1
- **50.** A pre-weighed vessel was filled with oxygen at NTP and weighed. It was then evacuated, filled with SO₂ at the same temperature and pressure, and again weighed. The weight of oxygen is
 - (a) the same as that of SO₂
 - (b) $\frac{1}{2}$ that of SO_2
 - (c) twice that of SO₂
 - (d) $\frac{1}{4}$ that of SO₂

Average Molecular Mass

- 51. Molecular mass of dry air is
 - (a) less than moist air
 - (b) greater than moist air
 - (c) equal to moist air
 - (d) may be greater or less than moist air
- 52. At room temperature, the molar volume of hydrogen fluoride gas has a mass of about 50 g. The formula weight of hydrogen fluoride is 20. Gaseous hydrogen fluoride at room temperature is therefore, probably a mixture of
 - (a) H, and F,
 - (b) HF and H₂F,
 - (c) HF and H₂,F₂,
 - (d) H_2F_2 and H_3F_3
- 53. A gaseous mixture contains 70% N_2 and 30% unknown gas, by volume. If the average molecular mass of gaseous mixture is 37.60, the molecular mass of unknown gas is
 - (a) 42.2
 - (b) 60
 - (c) 40
 - (d) 50

- 54. The mass composition of universe may be given as 90% H₂ and 10% He. The average molecular mass of universe should be
 - (a) 2.20

(b) 2.10

(c) 3.80

- (d) 3.64
- 55. A quantity of 10 g of a mixture of C₂H₆ and C₅H₁₀ occupy 4480 ml at 1 atm and 273 K. The percentage of C₂H₆ by mass, in the mixture is
 - (a) 30%

(b) 70%

(c) 50%

- (d) 60%
- **56.** The density (in g/l) of an equimolar mixture of methane and ethane at 1 atm and 0°C is
 - (a) 1.03

(b) 2.05

(c) 0.94

- (d) 1.25
- 57. 'n' mol of N_2 and 0.05 mol of Ar are enclosed in a vessel of capacity 6 1 at 1 atm and 27°C. The value of 'n' is $(R = 0.08 \text{ l atm mol}^{-1} \text{ K}^{-1})$
 - (a) 0.25
 - (b) 0.20
 - (c) 0.05
 - (d) 0.4