Empirical and Molecular Formula

71.	The empirical formula of an organic
	gaseous compound containing carbon and
	hydrogen is CH ₂ . The volume occupied by
	certain mass of this gas is exactly half of
	the volume occupied by the same mass of
	nitrogen gas under identical conditions.
	The molecular formula of the organic gas is

(a) C_2H_4

(b) CH,

(c) C_6H_{12}

- (d) C_4H_8
- 72. A compound has carbon, hydrogen, and oxygen in 3:3:1 atomic ratio. If the number of moles in 1 g of the compound is 6.06×10^{-3} , the molecular formula of the compound will be
 - (a) C₃H₃O
 - (b) $C_6H_6O_7$
 - (c) $C_9H_9O_3$
 - (d) $C_{12}H_{12}O_4$
- 73. A compound having the empirical formula, C_3H_4O , has a molecular weight of 170 ± 5 . The molecular formula of the compound is
 - (a) C_3H_4O
 - (b) $C_6H_8O_2$
 - (c) $C_6H_{12}O_3$
 - (d) $C_9H_{12}O_3$
- 74. It was found from the chemical analysis of a gas that it has two hydrogen atoms for each carbon atom. At 0°C and 1 atm, its density is 1.25 g per litre. The formula of the gas would be
 - (a) CH,

(b) C_2H_4

(c) C_2H_6

- (d) C_4H_8
- 75. A quantity of 1.4 g of a hydrocarbon gives 1.8 g water on complete combustion. The empirical formula of hydrocarbon is
 - (a) CH
 - (b) CH,
 - (c) CH_3
 - (d) CH₄

- **76.** An organic compound contains 40% carbon and 6.67% hydrogen by mass. Which of the following represents the empirical formula of the compound?
 - (a) CH,
 - (b) CH₂O
 - (c) C_2H_4O
 - (d) CH₃O
- 77. A compound contains elements X and Y in 1:4 mass ratio. If the atomic masses of X and Y are in 1:2 ratio, the empirical formula of compound should be
 - (a) XY₂

(b) X_2Y

(c) XY₄

- (d) X_4Y
- 78. A compound contains equal masses of the elements A, B and C. If the atomic masses of A, B and C are 20, 40 and 60, respectively, the empirical formula of the compound is
 - (a) A_3B_2C
 - (b) AB_2C_3
 - (c) ABC
 - (d) $A_6B_3C_2$
- **79.** A gaseous oxide contains 30.4% of nitrogen, one molecule of which contains one nitrogen atom. The density of the oxide relative to oxygen, under identical conditions, is about
 - (a) 0.69

(b) 1.44

(c) 0.35

- (d) 2.88
- 80. Iron form two oxides. If for the same mass of iron, mass of oxygen combined in the first oxide is two-third of the mass of oxygen combined in the second oxide, the ratio of valency of iron in first and second oxide is
 - (a) 1:1
 - (b) 2:3
 - (c) 3:2
 - (d) 2:5