WEST BENGAL STATE UNIVERSITY

DRAFT SYLLABUS IN CHEMISTRY (GENERAL)

UNDER

CHOICE BASED CREDIT SYSTEM

2018
Scheme for CBCS Curriculum for BSc. Chemistry

Credit Distribution across Courses

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Credits</th>
<th>Total Papers</th>
<th>Theory + Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 papers each from 3 disciplines of choice</td>
<td>12</td>
<td>12X4 =48</td>
<td>12X2 =24</td>
</tr>
<tr>
<td>Elective Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 papers each from 3 discipline of choice</td>
<td>6</td>
<td>6X4=24</td>
<td>6X2=12</td>
</tr>
<tr>
<td>including interdisciplinary papers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability Enhancement Language Courses</td>
<td>2</td>
<td>2X2=4</td>
<td></td>
</tr>
<tr>
<td>Skill Enhancement Courses</td>
<td>4</td>
<td>4X2=8</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>24</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Scheme for CBCS Curriculum

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Name</th>
<th>Course Detail</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ability Enhancement Compulsory Course–I</td>
<td>English communication / Environmental Science</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course–I</td>
<td>CEMGCOR01T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course–I Practical</td>
<td>CEMGCOR01P</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course–II</td>
<td>Core Course 2A from other chosen discipline</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course–II Practical</td>
<td>Core Course 2A Practical from other chosen discipline</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course – III</td>
<td>Core Course 3A from other chosen discipline</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course – III Practical</td>
<td>Core Course 3A Practical from other chosen discipline</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>Ability Enhancement Compulsory Course–II</td>
<td>English communication / Environmental Science</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Core course–IV</td>
<td>CEMGCOR02T</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course–IV Practical</td>
<td>CEMGCOR02P</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Core course–V</td>
<td>Core Course 2B from other chosen discipline</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course– V Practical</td>
<td>Core Course 2B Practical from other chosen discipline</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Core course – VI</td>
<td>Core Course 3B from other chosen discipline</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course – VI Practical</td>
<td>Core Course 3B Practical from other chosen discipline</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>III</td>
<td>Core course VII</td>
<td>CEMGCOR03T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course–VII Practical</td>
<td>CEMGCOR03P</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Core course – VIII</td>
<td>Core Course 2C from other chosen discipline</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course – VIII Practical</td>
<td>Core Course 2C Practical from other chosen discipline</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Core course–IX</td>
<td>Core Course 3C from other chosen discipline</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course–IX Practical</td>
<td>Core Course 3C Practical from other chosen discipline</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>IV</td>
<td>Skill Enhancement Course–1</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Core course–X</td>
<td>CEMGCOR04T</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course – X Practical</td>
<td>CEMGCOR04P</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Core course–XI</td>
<td>Core Course 2D from other chosen discipline</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course–XI Practical</td>
<td>Core Course 2D Practical from other chosen discipline</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Core course–XII</td>
<td>Core Course 3D from other chosen discipline</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course–XII Practical</td>
<td>Core Course 3D Practical from other chosen discipline</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Skill Enhancement Course-2</td>
<td></td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>V</td>
<td>Skill Enhancement Course – 3</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Discipline Specific Elective 1</td>
<td>DSE is to be chosen from CEMGDSE01T and CEMGDSE02T</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Discipline Specific Elective 1 Practical</td>
<td>DSE is to be chosen from CEMGDSE01P and CEMGDSE02P</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 2</td>
<td>DSE 2A from other chosen discipline</td>
<td>4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 2 Practical</td>
<td>DSE 2A Practical from other chosen discipline</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 3</td>
<td>DSE 3A from other chosen discipline</td>
<td>4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 3 Practical</td>
<td>DSE 3A Practical from other chosen discipline</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>VI Skill Enhancement Course – 4</td>
<td></td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 4</td>
<td>DSE is to be chosen from CEMGDSE03T and CEMGDSE04T</td>
<td>4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 4 Practical</td>
<td>DSE is to be chosen from CEMGDSE03P and CEMGDSE04P</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 5</td>
<td>DSE 2B from other chosen discipline</td>
<td>4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 5 Practical</td>
<td>DSE 2B Practical from other chosen discipline</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 6</td>
<td>DSE 3B from other chosen discipline</td>
<td>4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective 6 Practical</td>
<td>DSE 3B Practical from other chosen discipline</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>
Discipline Specific Elective papers (Credit: 06 each) (DSE 1, DSE 2):

Chemistry

1. CEMGDSE01T : Polymer Chemistry (4)
 CEMGDSE01P : Polymer Chemistry Lab (2)
2. CEMGDSE02T: Green Chemistry (4)
 CEMGDSE02P: Green Chemistry Lab (2)
3. CEMGDSE03T: Inorganic Materials of Industrial Importance (4)
 CEMGDSE03T: Inorganic Materials of Industrial Importance Lab (2)
4. CEMGDSE04: ORGANOMETALLICS, BIOINORGANIC CHEMISTRY, POLYNUCLEAR HYDROCARBONS AND UV, IR SPECTROSCOPY (4)
 CEMGDSE04: ORGANOMETALLICS, BIOINORGANIC CHEMISTRY, POLYNUCLEAR HYDROCARBONS AND UV, IR SPECTROSCOPY Lab (2)
SEMESTER-I

CEMGCOR01T: ATOMIC STRUCTURE, CHEMICAL PERIODICITY, ACIDS AND BASES, REDOX REACTIONS, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS

HYDROCARBONS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Section A: Inorganic Chemistry-I
(30 Lectures) Marks: 25

Atomic Structure (10 Lectures)

Chemical Periodicity (05 Lectures)
Classification of elements on the basis of electronic configuration: general characteristics of s-, p-, d- and f-block elements. Positions of hydrogen and noble gases. Atomic and ionic radii, ionization potential, electron affinity, and electronegativity; periodic and group-wise variation of above properties in respect of s- and p- block elements.

Acids and bases (10 Lectures)
Brönsted–Lowry concept, conjugate acids and bases, relative strengths of acids and bases, effects of substituent and solvent, differentiating and levelling solvents. Lewis acid-base concept, classification of Lewis acids and bases, Lux-Flood concept and solvent system concept. Hard and soft acids and bases (HSAB concept), applications of HSAB process.

Redox reactions (05 Lectures)
Balancing of equations by oxidation number and ion-electron method oxidimetry and reductimetry.

Section B: Organic Chemistry-I
(30 Lectures) Marks: 25

Fundamentals of Organic Chemistry (5 Lectures)
Electronic displacements: inductive effect, resonance and hyperconjugation; cleavage of bonds: homolytic and heterolytic; structure of organic molecules on the basis of VBT; nucleophiles electrophiles; reactive intermediates: carbocations, carbanions and free radicals.
Stereochemistry (8 Lectures)

Different types of isomerism; geometrical and optical isomerism; concept of chirality and optical activity (up to two carbon atoms); asymmetric carbon atom; elements of symmetry (plane and centre); interconversion of Fischer and Newman representations; enantiomerism and diastereomerism, meso compounds; threo and erythro, D and L, cis and trans nomenclature; CIP Rules: R/S (upto 2 chiral carbon atoms) and E/Z nomenclature.

Nucleophilic Substitution and Elimination Reactions (5 Lectures)

Nucleophilic substitutions: S_N^1 and S_N^2 reactions; eliminations: E1 and E2 reactions (elementary mechanistic aspects); Saytzeff and Hofmann eliminations; elimination vs substitution.

Aliphatic Hydrocarbons (12 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structures.

Alkanes: (up to 5 Carbons). Preparation: catalytic hydrogenation, Wurtz reaction, Kolbe’s synthesis, from Grignard reagent. Reactions: mechanism for free radical substitution: halogenation.

Alkenes: (up to 5 Carbons). Preparation: elimination reactions: dehydration of alcohols and dehydrohalogenation of alkyl halides; cis alkenes (partial catalytic hydrogenation) and trans alkenes (Birch reduction). Reactions: cis-addition (alkaline KMnO$_4$) and trans-addition (bromine) with mechanism, addition of HX [Markownikoff’s (with mechanism) and antiMarkownikoff’s addition], hydration, ozonolysis, oxymercuration-demercuration and hydroboration-oxidation reaction.

Alkynes: (up to 5 Carbons). Preparation: acetylene from CaC$_2$ and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal dihalides. Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO$_4$, ozonolysis and oxidation with hot alkaline KMnO$_4$.

Reference Books:

5. Sethi, A. Conceptual Organic Chemistry; New Age International Publisher.
Section A: Inorganic Chemistry –LAB (30 Lectures)

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.

2. Estimation of oxalic acid by titrating it with KMnO₄.

3. Estimation of water of crystallization in Mohr’s salt by titrating with KMnO₄.

4. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using internal indicator.

5. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃.

Section B: Organic Chemistry- LAB (30 Lectures)

Qualitative Analysis of Single Solid Organic Compound(s)

Experiment A: Detection of special elements (N, Cl, and S) in organic compounds.

Experiment B: Solubility and Classification (solvents: H₂O, dil. HCl, dil. NaOH)

Experiment C: Detection of functional groups: Aromatic-NO₂, Aromatic -NH₂, -COOH, carbonyl (no distinction of –CHO and >C=O needed), -OH (phenolic) in solid organic compounds.

Experiments A - C with unknown (at least 6) solid samples containing not more than two of the above type of functional groups should be done.

Reference Books:

Section A: Physical Chemistry-I

(30 Lectures) Marks: 25

Kinetic Theory of Gases and Real gases

Concept of pressure and temperature; Collision of gas molecules; Collision diameter; Collision number and mean free path; Frequency of binary collisions (similar and different molecules); Rate of effusion

Nature of distribution of velocities, Maxwell’s distribution of speed and kinetic energy; Average velocity, root mean square velocity and most probable velocity; Principle of equipartition of energy and its application to calculate the classical limit of molar heat capacity of gases

Deviation of gases from ideal behavior; compressibility factor; Boyle temperature; Andrew’s and Amagat’s plots; van der Waals equation and its features; its derivation and application in explaining real gas behaviour; Existence of critical state, Critical constants in terms of van der Waals constants; Law of corresponding states

Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only)

Liquids

Definition of Surface tension, its dimension and principle of its determination using stalgmometer; Viscosity of a liquid and principle of determination of coefficient of viscosity using Ostwald viscometer; Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only)

Solids

Forms of solids, crystal systems, unit cells, Bravais lattice types, Symmetry elements; Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices; Miller indices
of different planes and interplanar distance, Bragg’s law; Structures of NaCl, KCl and CsCl (qualitative treatment only); Defects in crystals; Glasses and liquid crystals.

Chemical Kinetics (08 Lectures)

Introduction of rate law, Order and molecularity; Extent of reaction; rate constants; Rates of First, second and nth order reactions and their Differential and integrated forms (with derivation); Pseudo first order reactions; Determination of order of a reaction by half-life and differential method; Opposing reactions, consecutive reactions and parallel reactions

Temperature dependence of rate constant; Arrhenius equation, energy of activation; Collision theory; Lindemann theory of unimolecular reaction; outline of Transition State theory (classical treatment)

Reference Books:

9. Mandal, A. K. *Degree Physical and General Chemistry* Sarat Book House

Section B: Inorganic Chemistry-II

(30 Lectures) Marks: 25

Chemical Bonding and Molecular Structure (16 Lectures)

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, BornHaber cycle and its applications, polarizing power and polarizability. Fajan’s rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Covalent Bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements.

Concept of resonance and resonating structures in various inorganic and organic compounds.
MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods. (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO\(^+\). Comparison of VB and MO approaches.

Comparative study of p-block elements: (14 Lectures)
Group trends in electronic configuration, modification of pure elements, common oxidation states, inert pair effect, and their important compounds in respect of the following groups of elements:

- i) B-Al-Ga-In-Tl
- ii) C-Si-Ge-Sn-Pb
- iii) N-P-As-Sb-Bi
- iv) O-S-Se-Te
- v) F-Cl-Br-I

Reference Books:

(60 Lectures/Contact Hours) Marks: 25

Section A: Physical Chemistry-LAB (15x2=30 Lectures)

(Minimum five experiments to complete)

(I) Surface tension measurement (use of organic solvents excluded)
 a) Determination of the surface tension of a liquid or a dilute solution using a Stalagmometer
 b) Study of the variation of surface tension of a detergent solution with concentration

(II) Viscosity measurement (use of organic solvents excluded)
 a) Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald’s viscometer
 b) Study of the variation of viscosity of an aqueous solution with concentration of solute

(III) Study the kinetics of the following reactions
 a) Initial rate method: Iodide-persulphate reaction
 b) Integrated rate method:
 (i) Acid hydrolysis of methyl acetate with hydrochloric acid
 (ii) Compare the strengths of HCl and H₂SO₄ by studying kinetics of hydrolysis of methyl acetate

Reference Books:
2. Palit, S.R., Practical Physical Chemistry Science Book Agency
3. Mukherjee, N.G., Selected Experiments in Physical Chemistry J. N. Ghose & Sons
4. Dutta, S.K., Physical Chemistry Experiments Bharati Book Stall

Section B: Inorganic Chemistry-LAB (30 Lectures)

Qualitative semimicro analysis of mixtures containing three radicals. Emphasis should be given to the understanding of the chemistry of different reactions.
Acid Radicals: Cl\(^-\), Br\(^-\), I\(^-\), NO\(_2^-\), NO\(_3^-\), S\(^2^-\), SO\(_4^{2-}\), PO\(_3^{3-}\), BO\(_3^{3-}\), H\(_3\)BO\(_3\). Basic Radicals: Na\(^+\), K\(^+\), Ca\(^{2+}\), Sr\(^{2+}\), Ba\(^{2+}\), Cr\(^{3+}\), Mn\(^{2+}\), Fe\(^{3+}\), Ni\(^{2+}\), Cu\(^{2+}\), NH\(_4^+\).

Reference Books:

CEMGCOR03T: CHEMICAL ENERGETICS, EQUILIBRIA, ORGANIC CHEMISTRY-II

(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Section A: Physical Chemistry-II

(30 Lectures) Marks: 25

Chemical Energetics (14 Lectures)

Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics; Concept of heat, work, internal energy and statement of first law; enthalpy, H; relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases

Standard states; Heats of reaction; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; Laws of thermochemistry; bond energy, bond dissociation energy and resonance energy from thermochemical data, Kirchhoff’s equations and effect of pressure on enthalpy of reactions; Adiabatic flame temperature; explosion temperature

Statement of the second law of thermodynamics; Concept of heat reservoirs and heat engines; Carnot cycle; Physical concept of Entropy; Carnot engine, refrigerator and efficiency; Entropy change of systems and surroundings for various processes and transformations; Auxiliary state functions (G and A) and Criteria for spontaneity and equilibrium.

Chemical Equilibrium: (08 Lectures)

Thermodynamic conditions for equilibrium, degree of advancement; Variation of free energy with degree of advancement; Equilibrium constant and standard Gibbs’ free energy change; Definitions of K_P, K_C and K_X and relation among them; van’t Hoff’s reaction isotherm, isobar and isochore from different standard states; Shifting of equilibrium due to change in external parameters e.g. temperature and pressure; variation of equilibrium constant with addition to inert gas; Le Chatelier’s principle

Ionic Equilibria: (08 Lectures)

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water; Ionization of weak acids and bases, pH scale, common ion effect; Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts; Buffer solutions; Solubility and solubility product of sparingly soluble salts – applications of solubility product principle
Reference Books:

5. Ekambaram, S. General Chemistry, Pearson.
9. Mandal, A. K. Degree Physical and General Chemistry Sarat Book House
10. Pahari, S., Physical Chemistry New Central Book Agency

Section-B: Organic Chemistry-II

(30 Lectures) Marks: 25

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structures.

Aromatic Hydrocarbons

Benzenepreparation: from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid. Reactions: electrophilic substitution (general mechanism); nitration (with mechanism), halogenations (chlorination and bromination), sulphonation and Friedel-Craft’s reaction (alkylation and acylation) (up to 4 carbons on benzene); side chain oxidation of alkyl benzenes (up to 4 carbons on benzene).

Organometallic Compounds

Introduction: Grignard reagents: Preparations (from alkyl and aryl halide); concept of umpolung; Reformatsky reaction.

Aryl Halides

Alcohols, Phenols and Ethers
(11 Lectures)

Alcohols: (up to 5 Carbons). Preparation: 1°-, 2°- and 3°- alcohols: using Grignard reagent, reduction of aldehydes, ketones, carboxylic acid and esters; Reactions: With sodium, HX (Lucas test), oxidation (alkaline KMnO₄, acidic dichromate, concentrated HNO₃); Oppenauer oxidation; Diols: Preparation (with OsO₄); pinacol- pinacolone rearrangement (with mechanism) (with symmetrical diols only).

Phenols: Preparation: cumene hydroperoxide method, from diazonium salts; acidic nature of phenols; Reactions: electrophilic substitution: nitration and halogenations; Reimer -Tiemann reaction, Houben–Hoesch condensation, Schotten –Baumann reaction, Fries rearrangement and Claisen rearrangement.

Ethers: Preparation: Williamson’s ether synthesis; Reaction: cleavage of ethers with HI.

Carbonyl Compounds
(08 Lectures)

Aldehydes and Ketones (aliphatic and aromatic): (Formaldehyde, acetaldehyde, acetone and benzaldehyde): Preparation: from acid chlorides, from nitriles and from Grignard reagents; general properties of aldehydes and ketones; Reactions: with HCN, ROH, NaHSO₃, NH₂-G derivatives and with Tollens’ and Fehling’s reagents; iodoform test; aldol condensation (with mechanism); Cannizzaro reaction (with mechanism), Wittig reaction, benzoin condensation; Clemmensen reduction, Wolff- Kishner reduction and Meerwein-Pondorff-Verley (MPV) reduction.

Reference Books:

Section A: Physical Chemistry-LAB

(15x2=30 Lectures)

(Minimum five experiments to complete)

(I) Thermochemistry (Any three)

1. Determination of heat capacity of calorimeter for different volumes
2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide
3. Determination of enthalpy of ionization of acetic acid
4. Determination of enthalpy of hydration of copper sulphate

(II) Ionic Equilibria (Any two)

a) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter and compare it with the indicator method

b) Preparation of buffer solutions and find the pH of an unknown buffer solution by colour matching method (using following buffers)
 (i) Sodium acetate-acetic acid
 (ii) Ammonium chloride-ammonium hydroxide

c) Study of the solubility of benzoic acid in water

Reference Books:

2. Palit, S.R., Practical Physical Chemistry Science Book Agency
3. Mukherjee, N.G., Selected Experiments in Physical Chemistry J. N. Ghose & Sons
4. Dutta, S.K., Physical Chemistry Experiments Bharati Book Stall

Section B: Organic Chemistry-LAB

Identification of a pure organic compound

Solid compounds: oxalic acid, tartaric acid, succinic acid, resorcinol, urea, glucose, benzoic acid and salicylic acid.
Liquid Compounds: methyl alcohol, ethyl alcohol, acetone, aniline, dimethylaniline, benzaldehyde, chloroform and nitrobenzene

Reference Books:

SEMESTER-IV

CEMGCOR04T: SOLUTIONS, PHASE EQUILIBRIA, CONDUCTANCE,

ELECTROCHEMISTRY & ANALYTICAL AND ENVIRONMENTAL CHEMISTRY-I

(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Section A: Physical Chemistry-III
(30 Lectures) Marks: 25

Solutions (06 Lectures)

Ideal solutions and Raoult’s law, deviations from Raoult’s law – non-ideal solutions; Vapour pressure-composition and temperature-composition curves of ideal and non-ideal solutions; Distillation of solutions; Lever rule; Azeotropes

Critical solution temperature; effect of impurity on partial miscibility of liquids; Immiscibility of liquids- Principle of steam distillation; Nernst distribution law and its applications, solvent extraction

Phase Equilibria (08 Lectures)

Phases, components and degrees of freedom of a system, criteria of phase equilibrium; Gibbs’ Phase Rule and its thermodynamic derivation; Derivation of Clausius – Clapeyron equation and its importance in phase equilibria; Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (leadsilver, FeCl₃-H₂O and Na-K only)

Conductance (08 Lectures)

Conductance, cell constant, specific conductance and molar conductance; Variation of specific and equivalent conductance with dilution for strong and weak electrolytes; Kohlrausch’s law of independent migration of ions; Equivalent and molar conductance at infinite dilution and their determination for strong and weak electrolytes; Ostwald’s dilution law; Application of conductance measurement (determination of solubility product and ionic product of water); Conductometric titrations (acid-base)

Transport Number and principles of Hittorf’s and Moving-boundary method

Electromotive force (08 Lectures)

Faraday’s laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry; Chemical cells, reversible
and irreversible cells with examples; Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential; Electrochemical series; Thermodynamics of a reversible cell, calculation of thermodynamic properties: G, H and S from EMF data

Concentration cells with and without transference, liquid junction potential; pH determination using hydrogen electrode and quinhydrone; Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation)

Reference Books:

Section B: Analytical and Environmental Chemistry
(30 Lectures) Marks: 25

Chemical Analysis (15 Lectures)

Gravimetric analysis: solubility product and common ion effect; requirements of gravimetry; gravimetric estimation of chloride, sulphate, lead, barium, nickel, copper and zinc.

Volumetric analysis: primary and secondary standard substances; principles of acid-base, oxidation – reduction and complexometric titrations; indicators: acid-base, redox and metal ion; principles of estimation of mixtures: NaHCO$_3$ and Na$_2$CO$_3$ (by acidimetry); iron, copper, manganese and chromium (by redox titration); zinc, aluminum, calcium and magnesium (by complexometric EDTA titration).

Chromatography: chromatographic methods of analysis: column chromatography and thin layer chromatography.

Environmental Chemistry (15 Lectures)

The Atmosphere: composition and structure of the atmosphere; troposphere, stratosphere, mesosphere and thermosphere; ozone layer and its role; major air pollutants: CO, SO$_2$, NO$_x$ and particulate matters – their origin and harmful effects; problem of ozone layer depletion; green house effect; acid rain and photochemical smog; air pollution episodes: air quality
standard; air pollution control measures: cyclone collector, electrostatic precipitator, catalytic converter.

The Hydrosphere: environmental role of water, natural water sources, water treatment for industrial, domestic and laboratory uses; water pollutants; action of soaps and detergents, phosphates, industrial effluents, agricultural runoff, domestic wastes; thermal pollution, radioactive pollution and their effects on animal and plant life; water pollution episodes: water pollution control measures: waste water treatment; chemical treatment and microbial treatment; water quality standards: DO, BOD, COD, TDS and hardness parameters; desalination of sea water: reverse osmosis, electrodialysis.

The Lithosphere: water and air in soil, waste matters and pollutants in soil, waste classification, treatment and disposal; soil pollution and control measures.

Reference Books:

Section A: Physical Chemistry-LAB

(15x2=30 Lectures)

Minimum six experiments to complete

(I) Distribution Law (Any one)

Study of the equilibrium of one of the following reactions by the distribution method:

\[\text{I}_2(aq) + \text{I}^-(aq) = \text{I}_3^-(aq) \]

\[\text{Cu}^{2+}(aq) + x\text{NH}_2(aq) = [\text{Cu(NH}_3)_x]^{2+} \]

(II) Phase equilibria (Any one)

a) Construction of the phase diagram of a binary system (simple eutectic) using cooling curves

b) Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it

(III) Conductance

a) Determination of dissociation constant of a weak acid (cell constant, equivalent conductance are also determined)

b) Perform the following conductometric titrations: (Any one)
 (i) Strong acid vs. strong base
 (ii) Weak acid vs. strong base

(IV) Potentiometry

Perform the following potentiometric titrations:
 (i) Weak acid vs. strong base
 (ii) Potassium dichromate vs. Mohr's salt

Reference Books:

2. Palit, S.R., Practical Physical Chemistry Science Book Agency

Section B: Analytic and Environmental Chemistry-LAB (30 Lectures)

1. To find the total hardness of water by EDTA titration.
2. To find the PH of an unknown solution by comparing color of a series of HCl solutions + 1 drop of methyl orange, and a similar series of NaOH solutions + 1 drop of phenolphthalein.
3. To determine the rate constant for the acid catalysed hydrolysis of an ester.
5. To determine the solubility of a sparingly soluble salt, e.g. KHTa (one bottle)

Reference Books:

Discipline Specific Electives

CHEMISTRY-DSE I-IV (ELECTIVES)
CEMGDSE01T: POLYMER CHEMISTRY
(Credits: Theory-06, Practicals-02)
Theory: 60 Lectures Marks:50

Introduction and history of polymeric materials:

(4 Lectures) Marks:04

Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of polymers.

Functionality and its importance:

(8 Lectures) Marks:06

Kinetics of Polymerization:

(8 lectures) Marks:06

Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques.

Crystallization and crystallinity:

(4 Lectures) Marks:04

Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point.

Nature and structure of polymers:

(2 Lectures) Marks:04

Structure Property relationships.

Determination of molecular weight of polymers

(8 Lectures) Marks:06
(\(M_n, M_w, \text{ etc}\)) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance. Polydispersity index.

Glass transition temperature (Tg) and determination of Tg.

(8 Lectures) Marks:06

Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg).

Polymer Solution –

(8 Lectures) Marks:06

Criteria for polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory, Lower and Upper critical solution temperatures.

Properties of Polymers

(10 Lectures) Marks:08

(Physical, thermal, flow & mechanical properties).

Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers, acrylic polymers, fluoro polymers, polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers, polydienes, Polycarbonates, Conducting Polymers, [polyacetylene, polyaniline, poly(p-phenylene sulphide polypyrrole, polythiophene)].

Reference Books:

1. **Polymer synthesis**

1. Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).

 a. Purification of monomer
 b. Polymerization using benzoyl peroxide (BPO) / 2,2’-azo-bisisobutylonitrile (AIBN)

2. Preparation of nylon 66/6

1. Interfacial polymerization, preparation of polyester from isophthaloyl chloride (IPC) and phenolphthalein

 a. Preparation of IPC
 b. Purification of IPC
 c. Interfacial polymerization

3. Redox polymerization of acrylamide

4. Precipitation polymerization of acrylonitrile

5. Preparation of urea-formaldehyde resin

6. Preparations of novalac resin/resold resin.

7. Microscale Emulsion Polymerization of Poly(methylacrylate).

Polymer characterization

1. Determination of molecular weight by viscometry:

 (a) Polyacrylamide-aq.NaNO₂ solution
 (b) Poly vinyl propyldine (PVP) in water

2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol) (PVOH) and the fraction of “head-to-head” monomer linkages in the polymer.

3. Determination of molecular weight by end group analysis: Polyethylene glycol (PEG) (OH group).

5. Determination of hydroxyl number of a polymer using colorimetric method.

Polymer analysis

1. Estimation of the amount of HCHO in the given solution by sodium sulphite method

2. Instrumental Techniques

3. IR studies of polymers

4. DSC analysis of polymers

5. Preparation of polyacrylamide and its electrophoresis *at least 7 experiments to be carried out.
Reference Books:

• Seymour/ Carraher’s Polymer Chemistry, 9th ed. by Charles E. Carraher, Jr. (2013).

CEMGDSE02T: GREEN CHEMISTRY

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Introduction to Green Chemistry

(4 Lectures) Marks: 05

Limitations/ Obstacles in the pursuit of the goals of Green Chemistry

Principles of Green Chemistry and Designing a Chemical synthesis

(30 Lectures) Marks: 25

Twelve principles of Green Chemistry with their explanations and examples and special emphasis on the following:

- Designing a Green Synthesis using these principles; Prevention of Waste/byproducts; maximum incorporation of the materials used in the process into the final products, Atom Economy, calculation of atom economy of the rearrangement, addition, substitution and elimination reactions.
- Prevention/ minimization of hazardous/ toxic products reducing toxicity.
 risk = (function) hazard × exposure; waste or pollution prevention hierarchy.

- Green solvents– supercritical fluids, water as a solvent for organic reactions, ionic liquids, fluorous biphasic solvent, PEG, solventless processes, immobilized solvents and how to compare greenness of solvents.

- Energy requirements for reactions – alternative sources of energy: use of microwaves and ultrasonic energy.

- Selection of starting materials; avoidance of unnecessary derivatization – careful use of blocking/protecting groups.

- Use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; catalysis and green chemistry, comparison of heterogeneous and homogeneous catalysis, biocatalysis, asymmetric catalysis and photocatalysis.

- Prevention of chemical accidents designing greener processes, inherent safer design, principle of ISD “What you don’t have cannot harm you”, greener alternative to Bhopal Gas Tragedy (safer route to carcarbaryl) and Flixiborough accident (safer route to cyclohexanol) subdivision of ISD, minimization, simplification, substitution, moderation and limitation.

- Strengthening/ development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.

Examples of Green Synthesis/ Reactions and some real world cases

(16 Lectures) Marks: 12

1. Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis)
2. Microwave assisted reactions in water: Hofmann Elimination, methyl benzoate to benzoic acid, oxidation of toluene and alcohols; microwave assisted reactions in organic solvents Diels-Alder reaction and Decarboxylation reaction
3. Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine)
5. Designing of Environmentally safe marine antifoulant.
7. An efficient, green synthesis of a compostable and widely applicable plastic (poly lactic acid) made from corn.
8. Healthier fats and oil by Green Chemistry: Enzymatic interesterification for production of no Trans-Fats and Oils
9. Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting

Future Trends in Green Chemistry
(10 Lectures) Marks: 08

Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; co crystal controlled solid state synthesis (C$_2$S$_3$); Green chemistry in sustainable development.

Reference Books:

CEMGDSE02P: GREEN CHEMISTRY

(60 Lectures/Contact Hours) Marks: 25

1. Safer starting materials

 - Preparation and characterization of nanoparticles of gold using tea leaves.

2. Using renewable resources

 - Preparation of biodiesel from vegetable/ waste cooking oil.

3. Avoiding waste

 Principle of atom economy.

 - Use of molecular model kit to stimulate the reaction to investigate how the atom economy can illustrate Green Chemistry.
 - Preparation of propene by two methods can be studied
 (I) \[
 \text{Triethylamine ion} + \text{OH}^- \rightarrow \text{propene} + \text{trimethylpropene} + \text{water} \\
 \text{H}_2\text{SO}_4/\Delta
 \]
 (II) \[
 \text{1-propanol} \rightarrow \text{propene} + \text{water}
 \]

• Other types of reactions, like addition, elimination, substitution and rearrangement should also be studied for the calculation of atom economy.

4. Use of enzymes as catalysts
• Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide.

5. Alternative Green solvents

Extraction of D-limonene from orange peel using liquid CO₂ prepared from dry ice.

Mechanochemical solvent free synthesis of azomethines

6. Alternative sources of energy
• Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper (II).
• Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reference Books:
Glass: Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass.

Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications, superconducting and semiconducting oxides, fullerenes carbon nanotubes and carbon fibre.

Cements: Classification of cement, ingredients and their role, Manufacture of cement and the setting process, quick setting cements.

Fertilizers:

(10 Lectures) Marks: 10

Different types of fertilizers. Manufacture of the following fertilizers: Urea, ammonium nitrate, calcium ammonium nitrate, ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers, potassium chloride, potassium sulphate.

Surface Coatings:

(8 Lectures) Marks: 06

Batteries:

(8 Lectures) Marks: 06

Primary and secondary batteries, battery components and their role, Characteristics of Battery. Working of following batteries: Pb acid, Li-Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell.

Alloys:

(8 Lectures) Marks: 06
Classification of alloys, ferrous and non-ferrous alloys, Specific properties of elements in alloys. Manufacture of Steel (removal of silicon decarbonization, demanganization, desulphurization dephosphorisation) and surface treatment (argon treatment, heat treatment, nitriding, carburizing). Composition and properties of different types of steels.

Catalysis:

(6 Lectures) Marks: 06

General principles and properties of catalysts, homogenous catalysis (catalytic steps and examples) and heterogenous catalysis (catalytic steps and examples) and their industrial applications, Deactivation or regeneration of catalysts.

Phase transfer catalysts, application of zeolites as catalysts.

Chemical explosives:

(4 Lectures) Marks: 04

Origin of explosive properties in organic compounds, preparation and explosive properties of lead azide, PETN, cyclonite (RDX). Introduction to rocket propellants.

Reference Books:

- B. K. Sharma: Engineering Chemistry, Goel Publishing House, Meerut

CEMGDSE03P:
INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE
(60 Lectures/Contact Hours) Marks: 25

1. Determination of free acidity in ammonium sulphate fertilizer.
2. Estimation of calcium in calcium ammonium nitrate fertilizer.
3. Estimation of phosphoric acid in superphosphate fertilizer.
4. Electroless metallic coatings on ceramic and plastic material.
5. Determination of composition of dolomite (by complexometric titration).
6. Analysis of (Cu, Ni); (Cu, Zn) in alloy or synthetic samples.
8. Preparation of pigment (zinc oxide).

Reference Books:
• E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.

CEMGDSE04T:
ORGANOMETALLICS, BIOINORGANIC CHEMISTRY,
POLYNUCLEAR HYDROCARBONS AND UV, IR SPECTROSCOPY
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Section A: Inorganic Chemistry-4
(30 Lectures) Marks: 25

Chemistry of 3d metals (6 Lectures)

Oxidation states displayed by Cr, Fe, Co, Ni and Co.

A study of the following compounds (including preparation and important properties);

Peroxo compounds of Cr, K_{2}Cr_{2}O_{7}, KMnO_{4}, K_{4}[Fe(CN)_{6}], sodium nitroprusside, [Co(NH_{3})_{6}]Cl_{3}, Na_{3}[Co(NO_{2})_{6}].

Organometallic Compounds (12 Lectures)

Definition and Classification with appropriate examples based on nature of metalcarbon bond (ionic, s, p and multicentre bonds). Structures of methyl lithium, Zeiss salt and ferrocene. EAN rule as applied to carbonyls. Preparation, structure, bonding and properties of mononuclear and polynuclear carbonyls of 3d metals. p-
acceptor behaviour of carbon monoxide. Synergic effects (VB approach)- (MO diagram of CO can be referred to for synergic effect to IR frequencies).

Bio-Inorganic Chemistry (12 Lectures)

A brief introduction to bio-inorganic chemistry. Role of metal ions present in biological systems with special reference to Na⁺, K⁺ and Mg²⁺ ions: Na/K pump; Role of Mg²⁺ ions in energy production and chlorophyll. Role of Ca²⁺ in blood clotting, stabilization of protein structures and structural role (bones).

Section B: Organic Chemistry-4

(30 Lectures) Marks: 25

Polynuclear and heteronuclear aromatic compounds: (6 Lectures)

Properties of the following compounds with reference to electrophilic and nucleophilic substitution: Naphthalene, Anthracene, Furan, Pyrrole, Thiophene, and Pyridine.

Active methylene compounds: (6 Lectures)

Preparation: Claisen ester condensation. Keto-enol tautomerism.

Reactions: Synthetic uses of ethylacetoacetate (preparation of non-heteromolecules having upto 6 carbon).

Application of Spectroscopy to Simple Organic Molecules (18 Lectures)

Application of visible, ultraviolet and Infrared spectroscopy in organic molecules. Electromagnetic radiations, electronic transitions, λ_{max} & ε_{max}, chromophore, auxochrome, bathochromic and hypsochromic shifts. Application of electronic spectroscopy and Woodward rules for calculating l_{max} of conjugated dienes and α,β –unsaturated compounds.

Infrared radiation and types of molecular vibrations, functional group and fingerprint region. IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of substitution on >C=O stretching absorptions).

Reference Books:

- J.D. Lee: *A New Concise Inorganic Chemistry*, E.L.B.S.
CEMGDSE04P:
(60 Lectures/Contact Hours) Marks: 25

Section A: Inorganic Chemistry
1. Separation of mixtures by chromatography: Measure the R_f value in each case.
 (Combination of two ions to be given)

Paper chromatographic separation of Fe^{3+}, Al^{3+} and Cr^{3+} or

Paper chromatographic separation of Ni^{2+}, Co^{2+}, Mn^{2+} and Zn^{2+}

2. Preparation of any two of the following complexes and measurement of their
 conductivity:

 (i) tetraamminecarbonatocobalt (III) nitrate
 (ii) tetraamminecopper (II) sulphate
 (iii) potassium trioxalatoferrate (III) trihydrate

Compare the conductance of the complexes with that of M/1000 solution of NaCl, MgCl_2 and LiCl_3.

Section B: Organic Chemistry

Systematic Qualitative Organic Analysis of Organic Compounds possessing
monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and
preparation of one derivative.

Reference Books:

• A.I. Vogel: Qualitative Inorganic Analysis, Prentice Hall, 7th Edn.
WEST BENGAL STATE UNIVERSITY

DRAFT SYLLABUS IN CHEMISTRY (HONOURS)

UNDER

CHOICE BASED CREDIT SYSTEM
Scheme for CBCS Curriculum

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course with Code</th>
<th>Course Detail</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ability Enhancement Compulsory Course – I</td>
<td>Environmental Science</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course – I</td>
<td>CEMACOR01T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course – I Practical</td>
<td>CEMACOR01P</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course – II</td>
<td>CEMACOR02T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course – II Practical</td>
<td>CEMACOR02P</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Genetic Elective – 1</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Generic Elective – 1 Practical</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>Ability Enhancement Compulsory Course – II</td>
<td>English / MIL communication</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course – III</td>
<td>CEMACOR03T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course – III Practical</td>
<td>CEMACOR03P</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course – IV</td>
<td>CEMACOR04T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course – IV Practical</td>
<td>CEMACOR04P</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Generic Elective – 2</td>
<td></td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Generic Elective – 2 Practical</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>III</td>
<td>Core course – V</td>
<td>CEMACOR05T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course – V Practical</td>
<td>CEMACOR05P</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course – VI</td>
<td>CEMACOR06T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course – VI Practical</td>
<td>CEMACOR06P</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Core course – VII</td>
<td>CEMACOR07T</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Core course – VII Practical</td>
<td>CEMACOR07P</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Semester</td>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Trend</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>IV</td>
<td>CEMACOR08T</td>
<td>Physical Chemistry III</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>CEMACOR08P</td>
<td>Physical Chemistry III</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CEMACOR09T</td>
<td>Inorganic Chemistry III</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>CEMACOR09P</td>
<td>Inorganic Chemistry III</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CEMACOR10T</td>
<td>Organic Chemistry IV</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>CEMACOR10P</td>
<td>Organic Chemistry IV</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CEMACOR11T</td>
<td>Inorganic Chemistry IV</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>CEMACOR11P</td>
<td>Inorganic Chemistry IV</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CEMACOR12T</td>
<td>Organic Chemistry V</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>CEMACOR12P</td>
<td>Organic Chemistry V</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CEMACOR13T</td>
<td>Inorganic Chemistry V</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>CEMACOR13P</td>
<td>Inorganic Chemistry V</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CEMACOR14T</td>
<td>Physical Chemistry IV</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Core course – XIV Practical</td>
<td>Physical Chemistry IV</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective – 3</td>
<td>4</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective – 3 Practical</td>
<td>2</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective – 4</td>
<td>4</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discipline Specific Elective – 4 Practical</td>
<td>2</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>140</td>
<td>1750</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choices for Discipline Specific Electives

<table>
<thead>
<tr>
<th>Discipline Specific Elective – 1-3</th>
<th>Discipline Specific Elective – 4-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose any two (2) for Sem - V</td>
<td>Choose any two (2) for Sem - VI</td>
</tr>
<tr>
<td>Advanced Physical Chemistry CEMADSE01</td>
<td>Green Chemistry CEMADSE04</td>
</tr>
<tr>
<td>Analytical Methods in Chemistry CEMADSE02</td>
<td>Inorganic Materials of Industrial Importance CEMADSE05</td>
</tr>
<tr>
<td>Instrumental Methods of Chemical Analysis CEMADSE03</td>
<td>Polymer Chemistry CEMADSE06</td>
</tr>
</tbody>
</table>

Choices for Skill Enhancement Courses

<table>
<thead>
<tr>
<th>Skill Enhancement Course-1</th>
<th>Skill Enhancement Course-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Analytical Chemistry CEMSSEC001</td>
<td>Analytical Clinical Biochemistry CEMSSEC002</td>
</tr>
</tbody>
</table>
CORE COURSE (HONOURS) IN CHEMISTRY

SEMESTER-I

CEMACOR01: ORGANIC CHEMISTRY-I

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Basics of Organic Chemistry Bonding and Physical Properties
(25 Lectures) Marks: 20

Valence Bond Theory: concept of hybridisation, shapes of molecules, resonance (including hyperconjugation); calculation of formal charges and double bond equivalent (DBE); orbital pictures of bonding (sp3, sp2, sp: C-C, C-N & C-O systems and s-cis and s-trans geometry for suitable cases).

Electronic displacements: inductive effect, field effect, mesomeric effect, resonance energy; bond polarization and bond polarizability; electromeric effect; steric effect, steric inhibition of resonance.

MO theory: qualitative idea about molecular orbitals, bonding and antibonding interactions, idea about σ, σ^*, π, π^*, n – MOs; basic idea about Frontier MOs (FMO); concept of HOMO, LUMO and SOMO; interpretation of chemical reactivity in terms of FMO interactions; sketch and energy levels of π MOs of i) acyclic p orbital system (C=C, conjugated diene, triene, allyl and pentadienyl systems) ii) cyclic p orbital system (neutral systems: [4], [6]-annulenes; charged systems: 3-,4-,5-membered ring systems); Hückel’s rules for aromaticity up to [10]-annulene (including mononuclear heterocyclic compounds up to 6-membered ring); concept of antiaromaticity and homoaromaticity; non-aromatic molecules; Frost diagram; elementary idea about α and β; measurement of delocalization energies in terms of β for buta-1,3-diene, cyclobutadiene, hexa-1,3,5-triene and benzene.

Physical properties: influence of hybridization on bond properties: bond dissociation energy (BDE) and bond energy; bond distances, bond angles; concept of bond angle strain (Baeyer’s strain theory); melting point/boiling point and solubility of common organic compounds in terms of covalent & non-covalent intermolecular forces; polarity of molecules and dipole moments; relative stabilities of isomeric hydrocarbons in terms of heat of hydrogenation, heat of combustion and heat of formation.

General Treatment of Reaction Mechanism I
(10 Lectures) Marks: 10
Mechanistic classification: ionic, radical and pericyclic (definition and example); reaction type: addition, elimination and substitution reactions (definition and example); nature of bond cleavage and bond formation: homolytic and heterolytic bond fission, homogenic and heterogenic bond formation; curly arrow rules in representation of mechanistic steps; reagent type: electrophiles and nucleophiles (elementary idea); electrophilicity and nucleophilicity in terms of FMO approach.

Reactive intermediates: carbocations (carbenium and carbonium ions), carbanions, carbon radicals, carbenes: generation and stability, structure using orbital picture and electrophilic/nucleophilic behavior of reactive intermediates (elementary idea).

Stereochemistry I
(25 Lectures) Marks: 20

Bonding geometries of carbon compounds and representation of molecules: tetrahedral nature of carbon and concept of asymmetry; Fischer, sawhorse, flying-wedge and Newman projection formulae and their inter translations.

Concept of chirality and symmetry: symmetry elements and point groups (C_1, C_2, C_3, C_4, D_2h, D_3h, D_4h, D_6h, S_n(C_n, C_i)); molecular chirality and centre of chirality; asymmetric and disymmetric molecules; enantiomers and diastereomers; concept of epimers; concept of stereogenicity, chirotopicity and pseudoasymmetry; chiral centres and number of stereoisomerism: systems involving 1/2/3-chiral centre(s) (AA, AB, ABA and ABC types).

Relative and absolute configuration: D/L and R/S descriptors; erythro/threo and meso nomenclature of compounds; syn/anti nomenclatures for aldols; E/Z descriptors for C=C, conjugated diene, triene, C=N and N=N systems; combination of R/S- and E/Z-isomerisms.

Optical activity of chiral compounds: optical rotation, specific rotation and molar rotation; racemic compounds, racemisation (through cationic, anionic, radical intermediates and through reversible formation of stable achiral intermediates); resolution of acids, bases and alcohols via diastereomeric salt formation; optical purity and enantiomeric excess; invertomerism of chiral trialkylamines.

Reference Books

CEMACOR01P: ORGANIC CHEMISTRY-I LAB

(60 Lectures/Contact Hours) Marks: 25

1. **Separation**, based upon solubility, by using common laboratory reagents like water (cold, hot), dil. HCl, dil. NaOH, dil. NaHCO₃, etc., of components of a binary solid mixture; purification of any one of the separated components by crystallization and determination of its melting point. The composition of the mixture may be of the following types: Benzoic acid/p-Toluidine; p-Nitrobenzoic acid/p-Aminobenzoic acid; p-Nitrotoluene/p-Anisidine; etc.

2. **Determination of boiling point** of common organic liquid compounds e.g., ethanol, cyclohexane, chloroform, ethyl methyl ketone, cyclohexanone, acetylacetone, anisole, crotonaldehyde, mesityl oxide, etc. [Boiling point of the chosen organic compounds should preferably be less than 160 °C]

3. **Identification of a Pure Organic Compound**

Solid compounds: oxalic acid, tartaric acid, citric acid, succinic acid, resorcinol, urea, glucose, cane sugar, benzoic acid and salicylic acid

Liquid Compounds: formic acid, acetic acid, methyl alcohol, ethyl alcohol, acetone, aniline, dimethylaniline, benzaldehyde, chloroform and nitrobenzene

Reference Books

CEMACOR02T: PHYSICAL CHEMISTRY-I

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Kinetic Theory and Gaseous state
(20 Lectures) Marks: 16

Kinetic Theory of gases: Concept of pressure and temperature; Collision of gas molecules; Collision diameter; Collision number and mean free path; Frequency of binary collisions (similar and different molecules); Rate of collision on wall and rate of effusion.

Maxwell’s distribution of speed and energy: Nature of distribution of velocities, Maxwell's distribution of speeds in one, two and three dimensions; Kinetic energy distribution in one, two and three dimensions, calculations of average, root mean square and most probable values in each case; Calculation of number of molecules having energy $\geq \varepsilon$, Principle of equipartition of energy and its application to calculate the classical limit of molar heat capacity of gases

Real gas and virial equation: Deviation of gases from ideal behavior; compressibility factor; Boyle temperature; Andrew's and Amagat's plots; van der Waals equation and its features; its derivation and application in explaining real gas behaviour, other equations of state (Berthelot, Dietrici); Existence of critical state, Critical constants in terms of van der Waals constants; Law of corresponding states; virial equation of state; van der Waals equation expressed in virial form and significance of second virial coefficient; Intermolecular forces (Debye, Keesom and London interactions; LennardJones potential - elementary idea)

Chemical Thermodynamics
(25 Lectures) Marks: 20

Zeroth and 1st law of Thermodynamics: Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics;Concept of heat, work, internal energy and statement of first law; enthalpy, H; relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions; Joule’s experiment and its consequence

Thermochemistry: Standard states; Heats of reaction; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; Laws of thermochemistry; bond energy, bond dissociation energy and resonance energy from thermochemical data, Kirchhoff’s equations and effect of pressure on enthalpy of reactions; Adiabatic flame temperature; explosion temperature
Second Law: Need for a Second law; statement of the second law of thermodynamics; Concept of heat reservoirs and heat engines; Carnot cycle; Physical concept of Entropy; Carnot engine and refrigerator; Kelvin – Planck and Clausius statements and equivalence of the two statements with entropic formulation; Carnot's theorem; Values of $\frac{dQ}{T}$ and Clausius inequality; Entropy change of systems and surroundings for various processes and transformations; Entropy and unavailable work; Auxiliary state functions (G and A) and their variation with T, P and V. Criteria for spontaneity and equilibrium.

Thermodynamic relations: Maxwell's relations; Gibbs- Helmholtz equation, Joule-Thomson experiment and its consequences; inversion temperature; Joule-Thomson coefficient for a van der Waals gas; General heat capacity relations

Chemical kinetics
(15 Lectures)
Marks: 14

Rate law, order and molecularity: Introduction of rate law, Extent of reaction; rate constants, order; Forms of rates of First, second and n-th order reactions; Pseudo first order reactions (example using acid catalyzed hydrolysis of methyl acetate); Determination of order of a reaction by half-life and differential method; Opposing reactions, parallel reactions and consecutive reactions (with explanation of kinetic and thermodynamic control of products; all steps first order) ; Rate equation for the fast reaction

Role of T and theories of reaction rate: Temperature dependence of rate constant; Arrhenius equation, energy of activation; Rate-determining step and steady-state approximation – explanation with suitable examples; Collision theory; Lindemann theory of unimolecular reaction; outline of Transition State theory (classical treatment)

Homogeneous catalysis: Homogeneous catalysis with reference to acid-base catalysis; Primary kinetic salt effect; Enzyme catalysis; Michaelis-Menten equation, LineweaverBurk plot, turn-over number

Autocatalysis; periodic reactions

Reference Books
2. Castellan, G. W. Physical Chemistry, Narosa
4. Engel, T. & Reid, P. Physical Chemistry, Pearson
6. Maron, S. & Prutton Physical Chemistry
9. Laidler, K. J. Chemical Kinetics, Pearson
10. Glasstone, S. & Lewis, G.N. Elements of Physical Chemistry
11. Rakshit, P.C., Physical Chemistry Sarat Book House

8

--

CEMACOR02T: PHYSICAL CHEMISTRY-I LAB

(60 Lectures/Contact Hours)

Marks: 25

Experiment 1: Determination of pH of unknown solution (buffer), by color matching method

Experiment 2: Determination of heat of neutralization of a strong acid by a strong base

Experiment 3: Study of kinetics of acid-catalyzed hydrolysis of methyl acetate

Experiment 4: Study of kinetics of decomposition of H$_2$O$_2$

Experiment 5: Determination of heat of solution of oxalic acid from solubility measurement

Reference Books

5. *University Hand Book of Undergraduate Chemistry Experiments*, edited by Mukherjee, G. N., University of Calcutta
SEMESTER-II

CEMACOR03T: INORGANIC CHEMISTRY-I

(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Extra nuclear Structure of atom
(18 Lectures) Marks: 14

Bohr’s theory, its limitations and atomic spectrum of hydrogen atom; Sommerfeld’s Theory. Wave mechanics: de Broglie equation, Heisenberg’s Uncertainty Principle and its significance, Schrödinger’s wave equation, significance of ψ and ψ^2. Quantum numbers and their significance. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f orbitals. Pauli’s Exclusion Principle, Hund’s rules and multiplicity, Exchange energy, Aufbau principle and its limitations, Ground state Term symbols of atoms and ions for atomic number upto 30.

Chemical periodicity
(8 Lectures) Marks: 10

Modern IUPAC Periodic table, Effective nuclear charge, screening effects and penetration, Slater’s rules, atomic radii, ionic radii (Pauling’s univalent), covalent radii, lanthanide contraction. Ionization potential, electron affinity and electronegativity (Pauling’s, Mulliken’s and Allred-Rochow’s scales) and factors influencing these properties, group electronegativities. Group trends and periodic trends in these properties in respect of s-, p- and d-block elements. Secondary periodicity, Relativistic Effect, Inert pair effect.

Acid-Base reactions
(16 Lectures) Marks: 12

Acid-Base concept: Arrhenius concept, theory of solvent system (H$_2$O, NH$_3$, SO$_2$ and HF), Bronsted-Lowry’s concept, relative strength of acids, Pauling’s rules. Lux-Flood concept, Lewis concept, group characteristics of Lewis acids, solvent levelling and differentiating effects. Thermodynamic acidity parameters, Drago-Wayland equation. Superacids, Gas phase acidity and proton affinity; HSAB principle. Acid-base equilibria in aqueous solution (Proton transfer equilibria in water), pH, buffer. Acid-base neutralisation curves; indicator, choice of indicators.
Redox Reactions and precipitation reactions
(18 Lectures) Marks: 14

Ion-electron method of balancing equation of redox reaction. Elementary idea on standard redox potentials with sign conventions, Nernst equation (without derivation). Influence of complex formation, precipitation and change of pH on redox potentials; formal potential. Feasibility of a redox titration, redox potential at the equivalence point, redox indicators. Redox potential diagram (Latimer and Frost diagrams) of common elements and their applications. Disproportionation and comproportionation reactions.

Solubility product principle, common ion effect and their applications to the precipitation and separation of common metallic ions as hydroxides, sulfides, phosphates, carbonates, sulfates and halides.

Reference Books

CEMACOR01P: INORGANIC CHEMISTRY-I LAB

60 (Lectures/Contact Hours) Marks: 25

Acid and Base Titrations:

1. Estimation of carbonate and hydroxide present together in mixture
2. Estimation of carbonate and bicarbonate present together in a mixture.
3. Estimation of free alkali present in different soaps/detergents. **Oxidation-Reduction**

Titrimetric

1. Estimation of Fe(II) using standardized KMnO₄ solution
2. Estimation of oxalic acid and sodium oxalate in a given mixture
3. Estimation of Fe(II) and Fe(III) in a given mixture using K₂Cr₂O₇ solution.
4. Estimation of Fe(III) and Mn(II) in a mixture using standardized KMnO₄ solution
5. Estimation of Fe(III) and Cu(II) in a mixture using K₂Cr₂O₇
6. Estimation of Fe(III) and Cr(III) in a mixture using K₂Cr₂O₇

Reference Books

CEMACOR04T: ORGANIC CHEMISTRY-II

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures **Marks: 50**

Stereochemistry II

*(20 Lectures) **Marks: 16**

Chirality arising out of stereoaxis: stereoisomerism of substituted cumulenes with even and odd number of double bonds; chiral axis in allenes, spiro compounds, alkylidene cycloalkanes and biphenyls; related configurational descriptors (*R*/S₀ and *P*/M₀); atropisomerism; racemisation of chiral biphenyls; butressing effect.

Concept of prostereoisomerism: prostereogenic centre; concept of *(pro)*-chirality: topicity of ligands and faces (elementary idea); *pro-R/pro-S, pro-E/pro-Z* and *Re/Si* descriptors; *pro-R* and *pro-S* descriptors of ligands on propseudoasymmetric centre.

Conformation: conformational nomenclature: eclipsed, staggered, *gauche, syn* and *anti*; dihedral angle, torsion angle; Klyne-Prelog terminology; *P/M* descriptors; energy barrier of rotation, concept of torsional and steric strains; relative stability of conformers on the basis of steric effect, dipole-dipole interaction and H-bonding; *butane gauche* interaction; conformational analysis of ethane, propane, *n*-butane, 2-methylbutane and 2,3-dimethylbutane; haloalkane, 1,2-dihaloalkanes and 1,2-diols (up to four carbons); 1,2-halohydrin; conformation of conjugated systems (*s*-cis and *s*-trans).

General Treatment of Reaction Mechanism II

*(22 Lectures) **Marks: 18*
Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE, intermolecular & intramolecular reactions.

Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity; proton sponge; gas-phase acidity and basicity; comparison between nucleophilicity and basicity; HSAB principle; application of thermodynamic principles in acid-base equilibria.

Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amo and enamine-imine systems); valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3dicarbonyl systems, phenols and related systems), factors affecting keto-enol tautomerism; application of thermodynamic principles in tautomeric equilibria.

Reaction kinetics: rate constant and free energy of activation; concept of order and molecularity; free energy profiles for one-step, two-step and three-step reactions; catalyzed reactions: electrophilic and nucleophilic catalysis; kinetic control and thermodynamic control of reactions; isotope effect: primary and secondary kinetic isotopic effect (k_H/k_D); principle of microscopic reversibility; Hammond’s postulate.

Substitution and Elimination Reactions
(18 Lectures) Marks: 16

Free-radical substitution reaction: halogentaion of alkanes, mechanism (with evidence) and stereochemical features; reactivity-selectivity principle in the light of Hammond’s postulate.

Nucleophilic substitution reactions: substitution at sp3 centre: mechanisms (with evidence), relative rates & stereochemical features: S_N1, S_N2, S_N2', S_N1' (allylic rearrangement) and S_N1; effects of solvent, substrate structure, leaving group and nucleophiles (including ambident nucleophiles, cyanide & nitrite); substitutions involving NGP; role of crown ethers and phase transfer catalysts; [systems: alkyl halides, allyl halides, benzyl halides, alcohols, ethers, epoxides].

Elimination reactions: E1, E2, E1cB and Ei (pyrolytic syn eliminations); formation of alkenes and alkynes; mechanisms (with evidence), reactivity, regioselectivity (Saytzeff/Hofmann) and stereoselectivity; comparison between substitution and elimination; importance of Bredt’s rule relating to the formation of C=C.

Reference Books

CEMACOR04P: ORGANIC CHEMISTRY-II LAB

60 (Lectures/Contact Hours) **Marks: 25**

Organic Preparations

A. The following reactions are to be performed, noting the yield of the crude product:

1. Nitration of aromatic compounds
2. Condensation reactions
3. Hydrolysis of amides/imides/esters
4. Acetylation of phenols/aromatic amines
5. Benzylation of phenols/aromatic amines
6. Side chain oxidation of aromatic compounds
7. Diazo coupling reactions of aromatic amines
8. Bromination of anilides using green approach (Bromate-Bromide method)
9. Redox reaction including solid-phase method
10. Green ‘multi-component-coupling’ reaction
11. Selective reduction of m-dinitrobenzene to m-nitroaniline

Students must also calculate percentage yield, based upon isolated yield (crude) and theoretical yield.

B. Purification of the crude product is to be made by crystallisation from water/alcohol, crystallization after charcoal treatment, or sublimation, whichever is applicable.

C. Melting point of the purified product is to be noted.
Reference Books

(SEMESTER-III)

CEMACOR05T: PHYSICAL CHEMISTRY-II

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Transport processes
(15 Lectures) Marks: 14

Fick’s law: Flux, force, phenomenological coefficients & their inter-relationship (general form), different examples of transport properties

Viscosity: General features of fluid flow (streamline flow and turbulent flow); Newton’s equation, viscosity coefficient; Poiseuille’s equation; principle of determination of viscosity coefficient of liquids by falling sphere method; Temperature variation of viscosity of liquids and comparison with that of gases

Conductance and transport number: Ion conductance; Conductance and measurement of conductance, cell constant, specific conductance, equivalent conductance and molar conductance; Variation of specific and equivalent conductance with dilution for strong and weak electrolytes; Kohlrausch's law of independent migration of ions; Equivalent and molar conductance at infinite dilution and their determination for strong and weak
electrolytes; Debye –Huckel theory of Ion atmosphere (qualitative)-asymmetric effect, relaxation effect and electrophoretic effect; Ostwald's dilution law; Ionic mobility; Application of conductance measurement (determination of solubility product and ionic product of water); Conductometric titrations

Transport number, Principles of Hittorf’s and Moving-boundary method; Wien effect, Debye-Falkenhagen effect, Walden’s rule

Applications of Thermodynamics – I
(25 Lectures) Marks: 20

Partial properties and Chemical potential: Chemical potential and activity, partial molar quantities, relation between Chemical potential and Gibbs’ free energy and other thermodynamic state functions; variation of Chemical potential (μ) with temperature and pressure; Gibbs-Duhem equation; fugacity and fugacity coefficient; Variation of thermodynamic functions for systems with variable composition; Equations of states for these systems, Change in G, S, H and V during mixing for binary solutions

Chemical Equilibrium: Thermodynamic conditions for equilibrium, degree of advancement; van’t Hoff’s reaction isotherm (deduction from chemical potential); Variation of free energy with degree of advancement; Equilibrium constant and standard Gibbs’ free energy change; Definitions of K_P, K_C and K_X; van’t Hoff’s reaction isobar and isochore from different standard states; Shifting of equilibrium due to change in external parameters e.g. temperature and pressure; variation of equilibrium constant with addition to inert gas; Le Chatelier's principle and its derivation

Nernst’s distribution law; Application- (finding out K_eq using Nernst dist law for KI+I_2 = KI_3 and dimerization of benzene)

Chemical potential and other properties of ideal substances- pure and mixtures: a) Pure ideal gas-its Chemical potential and other thermodynamic functions and their changes during a change of Thermodynamic parameters of mixing; Chemical potential of an ideal gas in an ideal gas mixture; Concept of standard states and choice of standard states of ideal gases

b) Condensed Phase – Chemical potential of pure solid and pure liquids, Ideal solution – Definition, Raoult’s law; Mixing properties of ideal solutions, chemical potential of a component in an ideal solution; Choice of standard states of solids and liquids

Foundation of Quantum Mechanics
(20 Lectures) Marks: 16

Beginning of Quantum Mechanics: Black-body radiation and Planck’s theory of radiation; Light as particles: photoelectric and Compton effects; electrons as waves; Wave-particle duality: de Broglie hypothesis, Uncertainty relations (without proof)
Wave function: Schrödinger time-independent equation; nature of the equation, acceptability conditions imposed on the wave functions and probability interpretations of wave function; Orthogonal and normal functions; Schmidt’s orthogonalization

Concept of Operators: Elementary concepts of operators, eigenfunctions and eigenvalues; Linear operators; Commutation of operators, commutator and uncertainty relation; Expectation value; Hermitian operator; Postulates of Quantum Mechanics; General structure of Schrödinger equation (S.E.) and time dependency; Stationary state

Particle in a box: Setting up of S.E. for one-dimensional well and its solution; Comparison with free particle eigenfunctions and eigenvalues. Properties of PB wave functions (normalisation, orthogonality, probability distribution); Expectation values of x, x^2, p_x and p_{x^2} and their significance in relation to the uncertainty principle; Extension of the problem to two and three dimensions and the concept of degenerate energy levels; Accidental degeneracy

Simple Harmonic Oscillator: setting up of the Schrödinger stationary equation, energy expression (without derivation), expression of wave function for $n = 0$ and $n = 1$ (without derivation) and their characteristic features

Reference Books

2. Castellan, G. W. Physical Chemistry, Narosa
5. Rakshit, P.C., Physical Chemistry, Sarat Book House
7. Mortimer, R. G. Physical Chemistry, Elsevier
10. Levine, I. N. Quantum Chemistry, PHI
11. Atkins, P. W. Molecular Quantum Mechanics, Oxford
15. Glasstone, S. An Introduction to Electrochemistry, East-West Press

CEMACOR05P: PHYSICAL CHEMISTRY-II LAB

60 (Lectures/Contact Hours) Marks: 25
Experiment 1: Study of viscosity of unknown liquid (glycerol, sugar) with respect to water

Experiment 2: Determination of partition coefficient for the distribution of I\(_2\) between water and CCl\(_4\)

Experiment 3: Determination of K\(_{eq}\) for KI + I\(_2\) = KI\(_3\), using partition coefficient between water and CCl\(_4\)

Experiment 4: Conductometric titration of an acid (strong, weak/ monobasic, dibasic) against base strong

Experiment 5: Study of saponification reaction conductometrically

Experiment 6: Verification of Ostwald’s dilution law and determination of K\(_a\) of weak acid

Reference Books
5. University Hand Book of Undergraduate Chemistry Experiments, edited by Mukherjee, G. N., University of Calcutta

CEMACOR06T: INORGANIC CHEMISTRY-II

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Chemical Bonding-I
(24 Lectures) Marks: 20

(ii) Covalent bond: Polarizing power and polarizability, ionic potential,Fazan’s rules. Lewis structures, formal charge. Valence Bond Theory. The hydrogen molecule (Heitler-London approach), directional character of covalent bonds, hybridizations, equivalent and non-equivalent hybrid orbitals, Bent’s rule, Dipole moments, VSEPR theory, shapes of
molecules and ions containing lone pairs and bond pairs (examples from main groups chemistry) and multiple bonding (σ and π bond approach).

Chemical Bonding-II
(24 Lectures) Marks: 20
(i) Molecular orbital concept of bonding (The approximations of the theory, Linear combination of atomic orbitals (LCAO)) (elementary pictorial approach): sigma and pibonds and delta interaction, multiple bonding. Orbital designations: gerade, ungerade, HOMO, LUMO. Orbital mixing. MO diagrams of H₂, Li₂, Be₂, B₂, C₂, N₂, O₂, F₂, and their ions wherever possible; Heteronuclear molecular orbitals: CO, NO, NO⁺, CN⁻, HF, BeH₂, CO₂ and H₂O. Bond properties: bond orders, bond lengths.
(iii) Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Intermolecular forces: Hydrogen bonding (theories of hydrogen bonding, valence bond treatment), receptor-guest interactions, Halogen bonds. Effects of chemical force, melting and boiling points.

Radioactivity
(12 Lectures) Marks: 10

Reference Books

Iodo-/ Iodimetric Titrations

1. Estimation of Cu(II)
2. Estimation of Vitamin C
3. Estimation of (i) arsenite and (ii) antimony in tartar-emetin iodimetrically
4. Estimation of available chlorine in bleaching powder. Estimation of metal content in some selective samples
 1. Estimation of Cu in brass.
 2. Estimation of Cr and Mn in Steel.
 3. Estimation of Fe in cement.

Reference Books

NBS; Birch reduction of benzenoid aromatics; interconversion of E - and Z - alkenes; contra-thermodynamic isomerization of internal alkenes.

Addition to C≡C (in comparison to C=C): mechanism, reactivity, regioselectivity (Markownikoff and anti-Markownikoff addition) and stereoselectivity; reactions: hydrogenation, halogenations, hydrohalogenation, hydration, oxymercuration-demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal alkynes by exploring its acidity; interconversion of terminal and non-terminal alkynes.

Aromatic Substitution
(10 Lectures) Marks: 08

Electrophilic aromatic substitution: mechanisms and evidences in favour of it; orientation and reactivity; reactions: nitration, nitrosation, sulfonation, halogenation, Friedel-Crafts reaction; one-carbon electrophiles (reactions: chloromethylation, Gatterman-Koch, Gatterman, Houben-Hoesch, Vilsmeier-Haack, Reimer-Tiemann, Kolbe-Schmidt); Ipso substituion.

Nucleophilic aromatic substitution: addition-elimination mechanism and evidences in favour of it; S_N1 mechanism; cine substitution (benzyne mechanism), structure of benzyne.

Carbonyl and Related Compounds
(30 Lectures) Marks: 22

Addition to C=O: structure, reactivity and preparation of carbonyl compounds; mechanism (with evidence), reactivity, equilibrium and kinetic control; Burgi-Dunitz trajectory in nucleophilic additions; formation of hydrates, cyano hydrins and bisulphite adduct; nucleophilic addition-elimination reactions with alcohols, thiols and nitrogen-based nucleophiles; reactions: benzoin condensation, Cannizzaro and Tischenko reactions, reactions with ylides: Wittig and Corey-Chaykovsky reaction; Rupe rearrangement, oxidations and reductions: Clemmensen, Wolff-Kishner, LiAlH_4, NaBH_4, MPV, Oppenauer, Bouveault-Blanc, acyloin condensation; oxidation of alcohols with PDC and PCC; periodic acid and lead tetraacetate oxidation of 1,2-diols.

Exploitation of acidity of α-H of C=O: formation of enols and enolates; kinetic and thermodynamic enolates; reactions (mechanism with evidence): halogenation of carbonyl compounds under acidic and basic conditions, Hell-Volhard-Zelinsky (H. V. Z.) reaction, nitrosation, SeO_2 (Riley) oxidation; condensations (mechanism with evidence): Aldol, Tollens’, Knoevenagel, Claisen-Schmidt, Claisen ester including Dieckmann, Stobbe; Mannich reaction, Perkin reaction, Favorksii rearrangement; alkylation of active methylene compounds; preparation and synthetic applications of diethyl malonate and ethyl acetoacetate; specific enol equivalents (lithium enolates, enamines,aza-enolates and silyl enol ethers) in connection with alkylation, acylation and aldol type reaction.

Elementary ideas of Green Chemistry: Twelve (12) principles of green chemistry; planning of green synthesis; common organic reactions and their counterparts: reactions:
Aldol, Friedel-Crafts, Michael, Knoevenagel, Cannizzaro, benzoin condensation and Dieckmann condensation.

Nucleophilic addition to α,β-unsaturated carbonyl system: general principle and mechanism (with evidence); direct and conjugate addition, addition of enolates (Michael reaction), Stetter reaction, Robinson annulation.

Substitution at sp² carbon (C=O system): mechanism (with evidence): $B_{AC}2, A_{AC}2, A_{AC}1, A_{AL}1$ (in connection to acid and ester); acid derivatives: amides, anhydrides & acyl halides (formation and hydrolysis including comparison).

Organometallics
(5 Lectures) Marks: 08

Grignard reagent; Organolithiums; Gilman cuprates: preparation and reactions (mechanism with evidence); addition of Grignard and organolithium to carbonyl compounds; substitution on -COX; directed ortho metallation of arenes using organolithiums, conjugate addition by Gilman cuprates; Corey-House synthesis; abnormal behavior of Grignard reagents; comparison of reactivity among Grignard, organolithiums and organocopper reagents; Reformatsky reaction; Blaise reaction; concept of *umpolung* and base-nucleophile dichotomy in case of organometallic reagents.

Reference Books

Experiment -1: Qualitative Analysis of Single Solid Organic Compounds

A. Detection of special elements (N, S, Cl, Br) by Lassaigne’s test

B. Solubility and classification (solvents: H₂O, 5% HCl, 5% NaOH and 5% NaHCO₃)

C. Detection of the following functional groups by systematic chemical tests: aromatic amino (-NH₂), aromatic nitro (-NO₂), amido (-CONH₂, including imide), phenolic –OH, carboxylic acid (-COOH), carbonyl (-CHO and >C=O); only one test for each functional group is to be reported.

D. Melting point of the given compound

E. Preparation, purification and melting point determination of a crystalline derivative of the given compound

F. Identification of the compound through literature survey.

Each student, during laboratory session, is required to carry out qualitative chemical tests for all the special elements and the functional groups with relevant derivatisation in known and unknown (at least six) organic compounds.

Reference Books

CEMACOR08T: PHYSICAL CHEMISTRY-III

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Application of Thermodynamics – II
(20 lectures) Marks: 18

Colligative properties: Vapour pressure of solution; Ideal solutions, ideally diluted solutions and colligative properties; Raoult's law; Thermodynamic derivation using chemical potential to derive relations between the four colligative properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) Osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution; Abnormal colligative properties

Phase rule: Definitions of phase, component and degrees of freedom; Phase rule and its derivations; Definition of phase diagram; Phase diagram for water, CO₂, Sulphur

First order phase transition and Clapeyron equation; Clausius-Clapeyron equation - derivation and use; Liquid vapour equilibrium for two component systems; Phenol-water system

Three component systems, water-chloroform-acetic acid system, triangular plots

Binary solutions: Ideal solution at fixed temperature and pressure; Principle of fractional distillation; Duhem-Margules equation; Henry's law; Konовалoff's rule; Positive and negative deviations from ideal behavior; Azeotropic solution; Liquid-liquid phase diagram using phenol- water system; Solid-liquid phase diagram; Eutectic mixture

Electrical Properties of molecules
(20 Lectures) Marks: 18

Ionic equilibria: Chemical potential of an ion in solution; Activity and activity coefficients of ions in solution; Debye-Huckel limiting law-brief qualitative description of the postulates involved, qualitative idea of the model, the equation (without derivation) for ion-ion atmosphere interaction potential. Estimation of activity coefficient for electrolytes using Debye-Huckel limiting law; Derivation of mean ionic activity coefficient from the expression of ion-atmosphere interaction potential; Applications of the equation and its limitations
Electromotive Force: Quantitative aspects of Faraday’s laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry; Chemical cells, reversible and irreversible cells with examples; Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential and its application to different kinds of half-cells. Application of EMF measurements in determining (i) free energy, enthalpy and entropy of a cell reaction, (ii) equilibrium constants, and (iii) pH values, using hydrogen, quinone-hydroquinone, glass and SbO/Sb₂O₃ electrodes

Concentration cells with and without transference, liquid junction potential; determination of activity coefficients and transference numbers; Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation)

Dipole moment and polarizability: Polarizability of atoms and molecules, dielectric constant and polarisation, molar polarisation for polar and non-polar molecules; Clausius-Mosotti equation and Debye equation (both without derivation) and their application; Determination of dipole moments

Quantum Chemistry
(20 Lectures) Marks: 16

Angular momentum: Commutation rules, quantization of square of total angular momentum and z-component; Properties of angular momentum operators; Eigenfunctions of L_z and L_z^2; Rigid rotator model of rotation of diatomic molecule and Schrödinger equation; Transformation to spherical polar coordinates; Separation of variables; Spherical harmonics; Discussion of solution

Qualitative treatment of hydrogen atom and hydrogen-like ions: Setting up of S.E. in spherical polar coordinates, radial part, quantization of energy (only final energy expression); Plots of polar parts and radial distributions; Wave –function of one electron atoms; Average and most probable distances of electron from nucleus; Setting up of Schrödinger equation for many-electron atoms (He, Li)

LCAO and HF-SCF: Born-Oppenheimer approximation; LCAO-MO treatment of H_2^+; Bonding and antibonding orbitals; Qualitative extension to H_2; Comparison of LCAOMO and VB treatments of H_2 and their limitations; Covalent bonding, valence bond and molecular orbital approaches, Hartree-Fock method development, SCF and configuration interaction (only basics)

Reference Books

1. Castellan, G. W. *Physical Chemistry*, Narosa
5. Moore, W. J. *Physical Chemistry*, Orient Longman
CEMACOR08P: PHYSICAL CHEMISTRY-III LAB
60 (Lectures/Contact Hours) Marks: 25

Experiment 1: Determination of solubility of sparingly soluble salt in water, in electrolyte with common ions and in neutral electrolyte (using common indicator)

Experiment 2: Potentiometric titration of Mohr’s salt solution against standard K₂Cr₂O₇ solution

Experiment 3: Determination of K_{sp} for AgCl by potentiometric titration of AgNO₃ solution against standard KCl solution

Experiment 4: Effect of ionic strength on the rate of Persulphate – Iodide reaction

Experiment 5: Study of phenol-water phase diagram

Experiment 6: pH-metric titration of acid (mono- and di-basic) against strong base

Reference Books

5. University Hand Book of Undergraduate Chemistry Experiments, edited by Mukherjee, G. N., University of Calcutta
CEMACOR09T: INORGANIC CHEMISTRY-III

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

General Principles of Metallurgy
(6 Lectures) Marks: 12

Chemistry of s and p Block Elements
(30 Lectures) Marks: 26

Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Beryllium hydrides and halides. Boric acid and borates, boron nitrides, borohydrides (diborane) and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, phosphorus, sulphur and chlorine. Peroxo acids of sulphur, sulphur-nitrogen compounds, interhalogen compounds, polyhalide ions, pseudohalogens, fluorocarbons and basic properties of halogens.

Noble Gases:
Occurrence and uses, rationalization of inertness of noble gases, peculiar behaviour of liquid helium, Clathrates; preparation and properties of XeF₂, XeF₄ and XeF₆; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF₂ and XeF₄). Xenon-oxygen compounds. Molecular shapes of noble gas compounds (VSEPR theory).

Inorganic Polymers:
Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Borazines, silicates and phosphazenes.

Coordination Chemistry-I
(24 Lectures) Marks: 12

Coordinate bonding: double and complex salts. Werner’s theory of coordination complexes, Classification of ligands, Ambidentate ligands, chelates, Coordination
numbers, IUPAC nomenclature of coordination complexes (up to two metal centers),
Isomerism in coordination compounds, constitutional and stereo isomerism, Geometrical
and optical isomerism in square planar and octahedral complexes.

Reference Books

2. Greenwood, N.N. & Earnshaw A. Chemistry of the Elements,

CEMACOR09P: INORGANIC CHEMISTRY-III LAB

60 (Lectures/Contact Hours) Marks: 25

Complexometric titration

1. Zn(II)
2. Zn(II) in a Zn(II) and Cu(II) mixture.
3. Ca(II) and Mg(II) in a mixture.
4. Hardness of water.

Inorganic preparations

1. [Cu(CH₃CN)₄]PF₆/ClO₄
2. *Cis* and *trans* K[Cr(C₂O₄)₂(H₂O)₂]
3. Tetraamminecarbonatocobalt (III) ion
4. Potassium tris(oxalato)ferrate(III)5. Tris-(ethylenediamine) nickel(II) chloride.
6. [Mn(acac)₃] and Fe(acac)₃ (acac= acetylacetonate)

Reference Books

CEMACOR10T: ORGANIC CHEMISTRY-IV

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Nitrogen compounds

(12 Lectures) Marks: 08

Amines: Aliphatic & Aromatic: preparation, separation (Hinsberg’s method) and identification of primary, secondary and tertiary amines; reaction (with mechanism): Eschweiler–Clarke methylation, diazo coupling reaction, Mannich reaction; formation and reactions of phenylenediamines, diazomethane and diazoacetic ester.

Nitro compounds (aliphatic and aromatic): preparation and reaction (with mechanism): reduction under different conditions; Nef carbonyl synthesis, Henry reaction and conjugate addition of nitroalkane anion.

Alkylnitrile and isonitrile: preparation and reaction (with mechanism): Thorpe nitrile condensation, von Richter reaction.

Diazonium salts and their related compounds: reactions (with mechanism) involving replacement of diazo group; reactions: Gomberg, Meerwein, Japp-Klingemann.

Rearrangements

(14 Lectures) Marks: 10
Mechanism with evidence and stereochemical features for the following

Rearrangement to electron-deficient nitrogen: rearrangements: Hofmann, Curtius, Lossen, Schmidt and Beckmann.

Rearrangement to electron-deficient oxygen: Baeyer-Villiger oxidation, cumene hydroperoxide-phenol rearrangement and Dakin reaction.

Aromatic rearrangements: Migration from oxygen to ring carbon: Fries rearrangement and Claisen rearrangement.
Migration from nitrogen to ring carbon: Hofmann-Martius rearrangement, FischerHepp rearrangement, N-azo to C-azo rearrangement, Bamberger rearrangement, Orton rearrangement and benzidine rearrangement.

Rearrangement reactions by green approach: Fries rearrangement, Claisen rearrangement, Beckmann rearrangement, Baeyer-Villiger oxidation.

The Logic of Organic Synthesis
(14 Lectures) Marks: 12

Retrosynthetic analysis: disconnections; synths, donor and acceptor synths; natural reactivity and umpolung; latent polarity in bifunctional compounds: consonant and dissonant polarity; illogical electrophiles and nucleophiles; synthetic equivalents; functional group interconversion and addition (FGI and FGA); C-C disconnections and synthesis: one-group and two-group (1,2- to 1,5-dioxygenated compounds), reconnection (1,6-dicarbonyl); protection-deprotection strategy (alcohol, amine, carbonyl, acid).

Strategy of ring synthesis: thermodynamic and kinetic factors; synthesis of large rings, application of high dilution technique.

Asymmetric synthesis: stereoselective and stereospecific reactions; diastereoselectivity and enantioselectivity (only definition); enantioselectivity: kinetically controlled MPV reduction; diastereoselectivity: addition of nucleophiles to C=O adjacent to a stereogenic centre: Felkin-Anh and Zimmermann-Traxler models.

Organic Spectroscopy
(20 Lectures) Marks: 20

UV Spectroscopy: introduction; types of electronic transitions, end absorption; transition dipole moment and allowed/forbidden transitions; chromophores and auxochromes; bathochromic and hypsochromic shifts; intensity of absorptions (Hyper/Hypochromic effects); application of Woodward’s Rules for calculation of λmax for the following systems: conjugated diene, α,β-unsaturated aldehydes and ketones (alicyclic, homoannular and heteroannular); extended conjugated systems (dienes, aldehydes and
ketones); relative positions of λ_{max} considering conjugative effect, steric effect, solvent effect, effect of pH; effective chromophore concentration: keto-enol systems; benzenoid transitions.

IR Spectroscopy: introduction; modes of molecular vibrations (fundamental and nonfundamental); IR active molecules; application of Hooke’s law, force constant; fingerprint region and its significance; effect of deuteration; overtone bands; vibrational coupling in IR; characteristic and diagnostic stretching frequencies of C-H, N-H, O-H, C-O, C-N, C-X, C=C (including skeletal vibrations of aromatic compounds), C=O, C=N, N=O, C=C, C≡N; characteristic/diagnostic bending vibrations are included; factors affecting stretching frequencies: effect of conjugation, electronic effects, mass effect, bond multiplicity, ring-size, solvent effect, H-bonding on IR absorptions; application in functional group analysis.

NMR Spectroscopy: introduction; nuclear spin; NMR active molecules; basic principles of Proton Magnetic Resonance; equivalent and non-equivalent protons; chemical shift and factors influencing it; ring current effect; significance of the terms: up-/downfield, shielded and deshielded protons; spin coupling and coupling constant (1st order spectra); relative intensities of first-order multiplets: Pascal’s triangle; chemical and magnetic equivalence in NMR; elementary idea about non-first-order splitting; anisotropic effects in alkene, alkyne, aldehydes and aromatics; NMR peak area, integration; relative peak positions with coupling patterns of common organic compounds (both aliphatic and benzenoid-aromatic); rapid proton exchange; interpretation of NMR spectra of simple compounds.

Applications of IR, UV and NMR spectroscopy for identification of simple organic molecules.

Reference Books

CEMACOR10P: ORGANIC CHEMISTRY-IV LAB

60 (Lectures/Contact Hours) Marks: 25

Quantitative Estimations: Each student is required to perform all the experiments.

1. Estimation of glycine by Sörensen’s formol method
2. Estimation of glucose by titration using Fehling’s solution
3. Estimation of sucrose by titration using Fehling’s solution
4. Estimation of vitamin-C (reduced)
5. Estimation of aromatic amine (aniline) by bromination (Bromate-Bromide) method
6. Estimation of phenol by bromination (Bromate-Bromide) method
7. Estimation of formaldehyde (Formalin)
8. Estimation of acetic acid in commercial vinegar
9. Estimation of urea (hypobromite method)
10. Estimation of saponification value of oil/fat/ester

Reference Books

1. Arthur, I. V. *Quantitative Organic Analysis*, Pearson
2. *University Hand Book of Undergraduate Chemistry Experiments*, edited by Mukherjee, G. N., University of Calcutta
SEMESTER-V

CEMACOR11T: INORGANIC CHEMISTRY-IV

(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Coordination Chemistry-II
(36 Lectures) Marks: 30

VB description and its limitations. Elementary Crystal Field Theory: splitting of d^n configurations in octahedral, square planar and tetrahedral fields, crystal field stabilization energy (CFSE) in weak and strong fields; pairing energy. Spectrochemical series. Jahn-Teller distortion. Octahedral site stabilization energy (OSSE). Metalligand bonding (MO concept, elementary idea), sigma- and pi-bonding in octahedral complexes (qualitative pictorial approach) and their effects on the oxidation states of transitional metals (examples). Magnetism and Colour: Orbital and spin magnetic moments, spin only moments of d^n ions and their correlation with effective magnetic moments, including orbital contribution; quenching of magnetic moment: super exchange and antiferromagnetic interactions (elementary idea with examples only); d-d transitions; L-S coupling; qualitative Orgel diagrams for $3d^1$ to $3d^9$ ions. Racah parameter. Selection rules for electronic spectral transitions; spectrochemical series of ligands; charge transfer spectra (elementary idea).

Chemistry of d- and f- block elements
(24 Lectures) Marks: 20

Transition Elements:
General comparison of 3d, 4d and 5d elements in term of electronic configuration, oxidation states, redox properties, coordination chemistry.
Lanthanoids and Actinoids:
General Comparison on Electronic configuration, oxidation states, colour, spectral and magnetic properties; lanthanide contraction, separation of lanthanides (ion-exchange method only).

Reference Books

CEMACOR11P: INORGANIC CHEMISTRY-IV LAB
(60 Lectures/Contact Hours)
Marks: 25

Chromatography of metal ions

Principles involved in chromatographic separations. Paper chromatographic separation of following metal ions:
1. Ni (II) and Co (II)
2. Fe (III) and Al (III)

Gravimetry
1. Estimation of Ni(II) using Dimethylglyoxime (DMG).
2. Estimation of copper as CuSCN.
3. Estimation of Al(III) by precipitating with oxine and weighing as Al(oxine)₃ (aluminium oxinate).
4. Estimation of chloride.

Spectrophotometry
1. Measurement of 10Dq by spectrophotometric method.
2. Determination of λ_{max} of [Mn(acac)₃] and [Fe(acac)₃] complexes.

Reference Books

CEMACOR12T: ORGANIC CHEMISTRY-V

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Carbocycles and Heterocycles

(16 Lectures) Marks: 12

Polynuclear hydrocarbons and their derivatives: synthetic methods include Haworth, Bardhan-Sengupta, Bogert-Cook and other useful syntheses (with mechanistic details); fixation of double bonds and Fries rule; reactions (with mechanism) of naphthalene, anthracene, phenanthrene and their derivatives.

Heterocyclic compounds: 5- and 6-membered rings with one heteroatom; reactivity, orientation and important reactions (with mechanism) of furan, pyrrole, thiophene and pyridine; synthesis (including retrosynthetic approach and mechanistic details): pyrrole: Knorr synthesis, Paal-Knorr synthesis, Hantzsch synthesis; furan: Paal-Knorr synthesis, Feist-Benary synthesis and its variation; thiophenes: Paal-Knorr synthesis, Hinsberg synthesis; pyridine: Hantzsch synthesis; benzo-fused 5- and 6-membered rings with one heteroatom: reactivity, orientation and important reactions (with mechanistic details) of indole, quinoline and isoquinoline; synthesis (including retrosynthetic approach and mechanistic details): indole: Fischer, Madelung and Reissert; quinoline: Skraup, Doebner-Miller, Friedlander; isoquinoline: Bischler-Napieralski synthesis.

Cyclic Stereochemistry

(10 Lectures) Marks: 08

Alicyclic compounds: concept of I-strain; conformational analysis: cyclohexane, mono and disubstituted cyclohexane; symmetry properties and optical activity; topomerisation; ring-size and ease of cyclisation; conformation & reactivity in cyclohexane system: consideration of steric and stereoelectronic requirements; elimination (E2, E1), nucleophilic substitution (SN1, SN2, SNi, NGP), merged substitution-elimination; rearrangements; oxidation of cyclohexanol, esterification, saponification, lactonisation, epoxidation, pyrolytic syn elimination and fragmentation reactions.

Pericyclic reactions

(8 Lectures) Marks: 08

Mechanism, stereochemistry, regioselectivity in case of

Electrocyclic reactions: FMO approach involving 4π- and 6π-electrons (thermal and photochemical) and corresponding cycloreversion reactions.

Sigmatropic reactions: FMO approach, sigmatropic shifts and their order; [1,3]- and [1,5]-H shifts and [3,3]-shifts with reference to Claisen and Cope rearrangements.

Carbohydrates
(14 Lectures) Marks: 10

Monosaccharides: Aldoses up to 6 carbons; structure of D-glucose & D-fructose (configuration & conformation); ring structure of monosaccharides (furanose and pyranose forms): Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation); mutarotation; epimerization; reactions (mechanisms in relevant cases): Fischer glycosidation, osazone formation, brominewater oxidation, HNO₃ oxidation, selective oxidation of terminal –CH₂OH of aldoses, reduction to alditols, Lobry de Bruyn-van Ekenstein rearrangement; stepping–up (Kiliiani-Fischer method) and stepping–down (Ruff’s & Wohl’s methods) of aldoses; end-group–interchange of aldoses; acetonide (isopropylidene) and benzylidene protections; ring-size determination; Fischer’s proof of configuration of (+)-glucose.

Disaccharides: Glycosidic linkages, concept of glycosidic bond formation by glycosyl donor-acceptor; structure of sucrose, inversion of cane sugar.
Polysaccharides: starch (structure and its use as an indicator in titrimetric analysis).

Biomolecules
(12 Lectures) Marks: 12

Amino acids: synthesis with mechanistic details: Strecker, Gabriel, acetamido malonic ester, azlactone, Bücherer hydantoin synthesis, synthesis involving diketopiperazine; isoelectric point, zwitterions; electrophoresis, reaction (with mechanism): ninhydrin reaction, Dakin-West reaction; resolution of racemic amino acids.

Peptides: peptide linkage and its geometry; syntheses (with mechanistic details) of peptides using N-protection & C-protection, solid-phase (Merrifield) synthesis; peptide sequence: C-terminal and N-terminal unit determination (Edman, Sanger & ‘dansyl’ methods); partial hydrolysis; specific cleavage of peptides: use of CNBr.

Nucleic acids: pyrimidine and purine bases (only structure & nomenclature); nucleosides and nucleotides corresponding to DNA and RNA; mechanism for acid catalysed hydrolysis of nucleosides (both pyrimidine and purine types); comparison of alkaline hydrolysis of DNA and RNA; elementary idea of double helical structure of DNA (Watson-Crick model); complimentary base–pairing in DNA.

Reference Books

CEMACOR12P: ORGANIC CHEMISTRY-V LAB

(60 Lectures/Contact Hours) Marks: 25

A. Chromatographic Separations

1. TLC separation of a mixture containing 2/3 amino acids
2. TLC separation of a mixture of dyes (fluorescein and methylene blue)
3. Column chromatographic separation of leaf pigments from spinach leaves
4. Column chromatographic separation of mixture of dyes
5. Paper chromatographic separation of a mixture containing 2/3 amino acids
6. Paper chromatographic separation of a mixture containing 2/3 sugars

B. Spectroscopic Analysis of Organic Compounds

1. Assignment of labelled peaks in the 1H NMR spectra of the known organic compounds explaining the relative δ-values and splitting pattern.
2. Assignment of labelled peaks in the IR spectrum of the same compound explaining the relative frequencies of the absorptions (C-H, O-H, N-H, C=O, C-N, C-X, C≡C, C≡N stretching frequencies; characteristic bending vibrations are included).

3. The students must record full spectral analysis of at least 15 (fifteen) compounds from the following list:

(i) 4′-Bromoacetanilide (ii) 2-Bromo-4′-methylacetophenone (iii) Vanillin (iv) 2′-Methoxyacetophenone (v) 4-Aminobenzoic acid (vi) Salicylamide (vii) 2′Hydroxyacetophenone (viii) 1,3-Dinitrobenzene (ix) trans-Cinnamic acid (x) trans-4Nitrocinnamaldehyde (xi) Diethyl fumarate (xii) 4-Nitrobenzaldehyde (xiii) 4′Methylacetanilide (xiv) Mesityl oxide (xv) 2-Hydroxybenzaldehyde (xvi) 4Nitroaniline (xvii) 2-Hydroxy-3-nitrobenzaldehyde (xviii) 2,3-Dimethylbenzonitrile (xix) Pent-1-yn-3-ol (xx) 3-Nitrobenzaldehyde (xxi) 3-Ethoxy-4-hydroxybenzaldehyde (xxii) 2-Methoxybenzaldehyde (xxiii) Methyl 4-hydroxybenzoate (xxiv) Methyl 3hydroxybenzoate (xxv) 3-Aminobenzoic acid (xxvi) Ethyl 3-aminobenzoate (xxvii) Ethyl 4-aminobenzoate (xxviii) 3-Nitroanisole (xxix) 5-Methyl-2-nitroanisole (xxx) 3′-Methylacetanilide

Reference Books

2. Practical Workbook Chemistry (Honours), UGBS, Chemistry, University of Calcutta, 2015
SEMESTER-VI

CEMACOR13T: INORGANIC CHEMISTRY-V

(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Bioinorganic Chemistry
(24 Lectures) Marks: 20

Elements of life: essential and beneficial elements, major, trace and ultratrace elements. Basic chemical reactions in the biological systems and the role of metal ions (specially Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\), Fe\(^{3+}/2^+\), Cu\(^{2+}/+\), and Zn\(^{2+}\)). Metal ion transport across biological membrane Na\(^+\)/ K\(^+\)-ion pump. Dioxygen molecule in life. Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin. Electron transfer proteins: Cytochromes and Ferredoxins. Hydroltyic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A. Biological nitrogen fixation, Photosynthesis: Photosystem-I and Photosystem-II. Toxic metal ions and their effects, chelation therapy (examples only), Pt and Au complexes as drugs (examples only), metal dependent diseases (examples only)

Organometallic Chemistry
(24 Lectures) Marks: 20

Catalysis by Organometallic Compounds
Study of the following industrial processes
1. Alkene hydrogenation (Wilkinson’s Catalyst)
2. Hydroformylation
3. Wacker Process
4. Synthetic gasoline (Fischer Tropsch reaction)
5. Ziegler-Natta catalysis for olefin polymerization.
Reaction Kinetics and Mechanism
(12 Lectures) Marks: 10

Introduction to inorganic reaction mechanisms. Substitution reactions in square planar complexes, Trans- effect and its application in complex synthesis, theories of trans effect, Mechanism of nucleophilic substitution in square planar complexes, Thermodynamic and Kinetic stability, Kinetics of octahedral substitution, Ligand field effects and reaction rates, Mechanism of substitution in octahedral complexes.

Reference Books

CEMACOR13P:: INORGANIC CHEMISTRY-V LAB
(60 Lectures/Contact Hours) Marks: 25

Qualitative semimicro analysis of mixtures containing four radicals. Emphasis should be given to the understanding of the chemistry of different reactions and to assign the most probable composition.

Cation Radicals: Na⁺,K⁺, Ca²⁺, Sr²⁺, Ba²⁺, Al³⁺, Cr³⁺, Mn²⁺/Mn⁴⁺, Fe³⁺, Co²⁺/Co³⁺, Ni²⁺, Cu²⁺, Zn²⁺, Pb²⁺, Cd²⁺, Bi³⁺, Sn²⁺/Sn⁴⁺, As³⁺/As⁵⁺, Sb³⁺/Sb⁵⁺, NH₄⁺, Mg²⁺.

Anion Radicals: F⁻, Cl⁻, Br⁻, BrO⁻, I⁻, IO₃⁻, SCN⁻, S²⁻, SO₄²⁻, NO₃⁻, NO₂⁻, PO₄³⁻, AsO₄³⁻, BO₃³⁻, CrO₄²⁻, Cr₂O₇²⁻, Fe(CN)₆⁴⁻, Fe(CN)₆³⁻.

Insoluble Materials: Al₂O₃(ig), Fe₂O₃(ig), Cr₂O₃(ig), SnO₂, SrSO₄, BaSO₄, CaF₂, PbSO₄.
Reference Books

--

CEMACOR14T: PHYSICAL CHEMISTRY- IV

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures Marks: 50

Molecular Spectroscopy
(25 Lectures) Marks: 20

Interaction of electromagnetic radiation with molecules; Transition between two states and time-dependent S.E.; Transition moment integral and selection rules; Various types of spectra

Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution

Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration, concept of group frequencies; Diatomic vibrating rotator, P, Q, R branches

Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion

Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of NMR spectroscopy, Larmor precession, chemical shift and low resolution spectra, different scales, spin-spin coupling and high resolution spectra, interpretation of PMR spectra of organic molecules

Electron Spin Resonance (ESR) spectroscopy: Its principle, hyperfine structure, ESR of simple radicals

Photochemistry
(15 Lectures) Marks: 14

Lambert-Beer’s law: Characteristics of electromagnetic radiation, Lambert-Beer’s law and its limitations, physical significance of absorption coefficients; Laws of photochemistry,
Stark-Einstein law of photochemical equivalence, quantum yield, actinometry, examples of low and high quantum yields

Photochemical Processes: Potential energy curves (diatomic molecules), Frank-Condon principle and vibrational structure of electronic spectra; Bond dissociation and principle of determination of dissociation energy (ground state); Decay of excited states by radiative and non-radiative paths; Pre-dissociation; Fluorescence and phosphorescence, Jablonskii diagram

Rate of Photochemical processes: Photochemical equilibrium and the differential rate of photochemical reactions, Photostationary state; HI decomposition, H₂-Br₂ reaction, dimerisation of anthracene; photosensitised reactions, quenching; Role of photochemical reactions in biochemical processes, photostationary states, chemiluminescence

Surface phenomenon

(20 Lectures) Marks: 16

Surface tension and energy: Surface tension, surface energy, excess pressure, capillary rise and surface tension; Work of cohesion and adhesion, spreading of liquid over other surface; Vapour pressure over curved surface; Temperature dependence of surface tension

Adsorption: Physical and chemical adsorption; Freundlich and Langmuir adsorption isotherms; multilayer adsorption and BET isotherm (no derivation required); Gibbs’ adsorption isotherm and surface excess; Heterogenous catalysis (single reactant); Zero order and fractional order reactions

Colloids: Lyophobic and lyophilic sols, Origin of charge and stability of lyophobic colloids, Coagulation and Schultz-Hardy rule, Zeta potential and Stern double layer (qualitative idea), Tyndall effect; Electrokinetic phenomena (qualitative idea only); Determination of Avogadro number by Perrin’s method; Stability of colloids and zeta potential; Micelle formation

Reference Books

1. Castellan, G. W. Physical Chemistry, Narosa
3. Atkins, P. W. & Paula, J. de Atkin’s, Physical Chemistry, Oxford University Press
5. Mortimer, R. G. Physical Chemistry, Elsevier
9. Hollas, J.M. Modern Spectroscopy, Wiley India
10. McHale, J. L. Molecular Spectroscopy, Pearson Education
CEMACOR14P: PHYSICAL CHEMISTRY - IV LAB
(60 Lectures/Contact Hours) Marks: 25

Experiment 1: Determination of surface tension of a liquid using Stalagmometer

Experiment 2: Determination of CMC from surface tension measurements

Experiment 3: Verification of Beer and Lambert’s Law for KMnO₄ and K₂Cr₂O₇ solution

Experiment 4: Study of kinetics of K₂S₂O₈ + KI reaction, spectrophotometrically

Experiment 5: Determination of pH of unknown buffer, spectrophotometrically

Experiment 6: Spectrophotometric determination of CMC

Reference Books

5. University Hand Book of Undergraduate Chemistry Experiments, edited by Mukherjee, G. N., University of Calcutta

DISCIPLINE SPECIFIC ELECTIVE COURSE (HONOURS) IN CHEMISTRY
CEMADSE01T:
ADVANCED PHYSICAL CHEMISTRY (Credits: Theory-04, Practicals-02)

Theory
(60 Lectures)
Crystal Structure
(20 Lectures) Marks: 18

Bravais Lattice and Laws of Crystallography: Types of solid, Bragg’s law of diffraction; Laws of crystallography; Permissible symmetry axes in crystals; Lattice, space lattice, unit cell, crystal planes, Bravais lattice. Packing of uniform hard sphere, close packed arrangements (fcc and hcp); Tetrahedral and octahedral voids. Void space in p-type, F-type and I-type cubic systems

Crystal planes: Distance between consecutive planes [cubic, tetragonal and orthorhombic lattices]; Indexing of planes, Miller indices; calculation of d_{hkl}; Relation between molar mass and unit cell dimension for cubic system; Laue’s diffraction; Bragg’s law (derivation)

Determination of crystal structure: Powder method; Structure of NaCl and KCl crystals

Statistical Thermodynamics
(20 Lectures) Marks: 16

Configuration: Macrostates, microstates and configuration; calculation of microstates with harmonic oscillator and tossing of coins; variation of W with E; equilibrium configuration

Boltzmann distribution: Thermodynamic probability, entropy and probability, Boltzmann distribution formula (with derivation); Applications to barometric distribution; Concept of ensemble - canonical ensemble and grand canonical ensembles

Partition function: molecular partition function and thermodynamic properties (U, H, S, C_V, q, P); Partition function correlating – Chemical equilibrium and Maxwell’s speed distribution; Gibbs’ paradox; Ideal gas equation

Special selected topics
(20 Lectures) Marks: 16

Specific heat of solid: Coefficient of thermal expansion, thermal compressibility of solids; Dulong –Petit’s law; Perfect Crystal model, Einstein’s theory – derivation from partition function, limitations; Debye’s T^3 law – analysis at the two extremes
3rd law: Absolute entropy, Plank’s law, Calculation of entropy, Nernst heat theorem

Adiabatic demagnetization: Approach to zero Kelvin, adiabatic cooling, demagnetization, adiabatic demagnetization – involved curves

Polymers: Classification of polymers, nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers; Criteria for synthetic polymer formation; Relationships between functionality, extent of reaction and degree of polymerization; Mechanism and kinetics of step growth and copolymerization; Conducting polymers

Reference Books

1. Castellan, G. W. Physical Chemistry, Narosa
7. Nash, L. K. Elements of Statistical Thermodynamics, Dover
12. Odian, G. Principles of Polymerization, Wiley

CEMADSE01P: ADVANCED PHYSICAL CHEMISTRY LAB
(60 Lectures/Contact Hours) Marks: 25

Computer programs based on numerical methods for

Programming 1: Roots of equations: (e.g. volume of van der Waals gas and comparison with ideal gas, pH of a weak acid)

Programming 2: Numerical differentiation (e.g., change in pressure for small change in volume of a van der Waals gas, potentiometric titrations)

Programming 3: Numerical integration (e.g. entropy/enthalpy change from heat capacity data), probability distributions (gas kinetic theory) and mean values

Programming 4: Matrix operations (Application of Gauss-Siedel method in colourimetry)

Programming 5: Simple exercises using molecular visualization software
Reference Books

CEMADSE02T: ANALYTICAL METHODS IN CHEMISTRY
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures
Marks: 50

Qualitative and quantitative aspects of analysis:
(05 Lectures) Marks: 06

Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.

Optical methods of analysis:
(25 Lectures) Marks: 16

UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument; *Basic principles of quantitative analysis:* estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Determination of composition of metal complexes using Job’s method of continuous variation and mole ratio method. *Infrared Spectrometry:* Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques.

Structural illustration through interpretation of data, Effect and importance of isotope substitution.

Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background
correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.

Thermal methods of analysis:
(05 Lectures) Marks: 06

Theory of thermogravimetry (TG), basic principle of instrumentation.
Techniques for quantitative estimation of Ca and Mg from their mixture.

Electroanalytical methods:
(10 Lectures) Marks: 08

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values.

Separation techniques:
(15 Lectures) Marks: 14

Solvent extraction: Classification, principle and efficiency of the technique.
Mechanism of extraction: extraction by solvation and chelation.
Technique of extraction: batch, continuous and counter current extractions.
Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media.
Chromatography: Classification, principle and efficiency of the technique.
Mechanism of separation: adsorption, partition & ion exchange.
Development of chromatograms: frontal, elution and displacement methods.
Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC.
Stereosomeric separation and analysis: Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios and determination of enantiomeric composition using NMR, Chiral solvents and chiral shift reagents. Chiral chromatographic techniques using chiral columns (GC and HPLC).

Role of computers in instrumental methods of analysis.

Reference Books

1. Mendham, J., *A. I. Vogel’s Quantitative Chemical Analysis 6th Ed.*, Pearson,
2009.

--

CEMADSE02P: ANALYTICAL METHODS IN CHEMISTRY LAB

(60 Lectures/Contact Hours) Marks: 25

I. Separation Techniques

Chromatography:

(a) Separation of mixtures

Separation and identification of the monosaccharides present in the given mixture (glucose & fructose) by paper chromatography. Reporting the Rf values.

(b) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on the basis of their Rf values.

(c) Chromatographic separation of the active ingredients of plants, flowers and juices by TLC

II. Solvent Extractions:

To separate a mixture of Ni$^{2+}$ & Fe$^{2+}$ by complexation with DMG and extracting the Ni$^{2+}$-DMG complex in chloroform, and determine its concentration by spectrophotometry.

Analysis of soil:

(i) Determination of pH of soil.
(ii) Estimation of calcium, magnesium, phosphate

Ion exchange:

Determination of exchange capacity of cation exchange resins and anion exchange resins.

III. Spectrophotometry

1. Determination of pKa values of indicator using spectrophotometry.
2. Determination of chemical oxygen demand (COD).
3. Determination of Biological oxygen demand (BOD).

Reference Books

CEMADSE03T: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS

(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Introduction to spectroscopic methods of analysis:
(04 Lectures) Marks: 04

Recap of the spectroscopic methods covered in detail in the core chemistry syllabus: Treatment of analytical data, including error analysis. Classification of analytical methods and the types of instrumental methods. Consideration of electromagnetic radiation.
Molecular spectroscopy:
(16 Lectures) Marks: 12

Infrared spectroscopy:

Interactions with molecules: absorption and scattering. Means of excitation (light sources), separation of spectrum (wavelength dispersion, time resolution), detection of the signal (heat, differential detection), interpretation of spectrum (qualitative, mixtures, resolution), advantages of Fourier Transform (FTIR). Samples and results expected. Applications: Issues of quality assurance and quality control, Special problems for portable instrumentation and rapid detection.

UV-Visible/ Near IR – emission, absorption, fluorescence and photoacoustic. Excitations sources (lasers, time resolution), wavelength dispersion (gratings, prisms, interference filters, laser, placement of sample relative to dispersion, resolution), Detection of signal (photocells, photomultipliers, diode arrays, sensitivity and S/N), Single and Double Beam instruments, Interpretation (quantification, mixtures, absorption vs. fluorescence and the use of time, photoacoustic, fluorescent tags).

Separation techniques:
(16 Lectures) Marks: 12

Chromatography: Gas chromatography, liquid chromatography, supercritical fluids, Importance of column technology (packing, capillaries), Separation based on increasing number of factors (volatility, solubility, interactions with stationary phase, size, electrical field), Detection: simple vs. specific (gas and liquid), Detection as a means of further analysis (use of tags and coupling to IR and MS), Electrophoresis (plates and capillary) and use with DNA analysis.

Elemental analysis:
(08 Lectures) Marks: 06

Mass spectrometry (electrical discharges).

Excitation and getting sample into gas phase (flames, electrical discharges, plasmas), Wavelength separation and resolution (dependence on technique), Detection of radiation (simultaneous/scanning, signal noise), Interpretation (errors due to molecular and ionic species, matrix effects, other interferences).

NMR spectroscopy:
(04 Lectures) Marks: 04

Principle, Instrumentation, Factors affecting chemical shift, Spin-coupling, Applications.

Electroanalytical Methods:
(04 Lectures) Marks: 04

Potentiometry & Voltammetry

Radiochemical Methods:
(04 Lectures) Marks: 04
Elementary idea

X-ray analysis and electron spectroscopy (surface analysis):
(04 Lectures) Marks: 04
Elementary idea

Reference books

CEMADSE03T: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS LAB

(60 Lectures/Contact Hours) Marks: 25

1. Safety Practices in the Chemistry Laboratory
2. Determination of the isoelectric pH of a protein.
3. Titration curve of an amino acid.
4. Determination of the void volume of a gel filtration column.
5. Determination of a Mixture of Cobalt and Nickel (UV/Vis spec.)
6. Study of Electronic Transitions in Organic Molecules (i.e., acetone in water)
7. IR Absorption Spectra (Study of Aldehydes and Ketones)
8. Determination of Calcium, Iron, and Copper in Food by Atomic Absorption
9. Quantitative Analysis of Mixtures by Gas Chromatography (i.e., chloroform and carbon tetrachloride)
10. Separation of Carbohydrates by HPLC
11. Determination of Caffeine in Beverages by HPLC
12. Potentiometric Titration of a Chloride-Iodide Mixture
13. Cyclic Voltammetry of the Ferrocyanide/ Ferricyanide Couple
14. Nuclear Magnetic Resonance
15. Use of fluorescence to do “presumptive tests” to identify blood or other body fluids.
16. Use of “presumptive tests” for anthrax or cocaine
17. Collection, preservation, and control of blood evidence being used for DNA testing
18. Use of capillary electrophoresis with laser fluorescence detection for nuclear DNA (Y chromosome only or multiple chromosome)
19. Use of sequencing for the analysis of mitochondrial DNA
20. Laboratory analysis to confirm anthrax or cocaine
21. Detection in the field and confirmation in the laboratory of flammable accelerants or explosives
22. Detection of illegal drugs or steroids in athletes
23. Detection of pollutants or illegal dumping
24. Fibre analysis

At least 10 experiments to be performed.

Reference Books

CEMADSE04T: GREEN CHEMISTRY

(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Introduction to Green Chemistry:
(04 Lectures) Marks: 06
What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry. Limitations/Obstacles in the pursuit of the goals of Green Chemistry

Principles of Green Chemistry and Designing a Chemical synthesis:
(30 Lectures) Marks: 22

Twelve principles of Green Chemistry with their explanations and examples and special emphasis on the following:

- Designing a Green Synthesis using these principles; Prevention of Waste/byproducts; maximum incorporation of the materials used in the process into the final products, Atom Economy, calculation of atom economy of the rearrangement, addition, substitution and elimination reactions. Prevention/minimization of hazardous/toxic products reducing toxicity. risk = (function) hazard × exposure; waste or pollution prevention hierarchy.
- Green solvents– supercritical fluids, water as a solvent for organic reactions, ionic liquids, fluororous biphasic solvent, PEG, solventless processes, immobilized solvents and how to compare greenness of solvents.
- Energy requirements for reactions – alternative sources of energy: use of microwaves and ultrasonic energy.
- Selection of starting materials; avoidance of unnecessary derivatization – careful use of blocking/protecting groups.
- Use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; catalysis and green chemistry, comparison of heterogeneous and homogeneous catalysis, biocatalysis, asymmetric catalysis and photocatalysis.
- Prevention of chemical accidents designing greener processes, inherent safer design, principle of ISD “What you don’t have cannot harm you”, greener alternative to Bhopal Gas Tragedy (safer route to carbaryl) and Flixborough accident (safer route to cyclohexanol) subdivision of ISD, minimization, simplification, substitution, moderation and limitation.
- Strengthening/development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.

Examples of Green Synthesis/Reactions and some real world cases:
(16 Lectures) Marks: 12

1. Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis)
2. Microwave assisted reactions in water: Hofmann Elimination, methyl benzoate to benzoic acid, oxidation of toluene and alcohols; microwave assisted reactions
in organic solvents Diels-Alder reaction and Decarboxylation reaction

3. Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction
 (Ultrasonic alternative to Iodine)

5. Designing of Environmentally safe marine antifoulant.

7. An efficient, green synthesis of a compostable and widely applicable plastic (poly lactic acid) made from corn.

8. Healthier Fats and oil by Green Chemistry: Enzymatic Inter esterification for production of no Trans-Fats and Oils

9. Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting

Future Trends in Green Chemistry:
(10 Lectures) Marks:10

Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; co-crystal controlled solid state synthesis (C₂S₃); Green chemistry in sustainable development.

Reference Books

CEMADSE04P: GREEN CHEMISTRY LAB
(60 Lectures/Contact Hours) Marks: 25

1. Safer starting materials

 • Preparation and characterization of nanoparticles of gold using tea leaves.
2. Using renewable resources

- Preparation of biodiesel from vegetable/waste cooking oil.

3. Avoiding waste

Principle of atom economy

- Use of molecular model kit to stimulate the reaction to investigate how the atom economy can illustrate Green Chemistry.
- Preparation of propene by two methods can be studied

\[
\text{Triethylamine ion} + \text{OH} \rightarrow \text{propene} + \text{trimethylpropene} + \text{water}
\]

\[
\text{H}_2\text{SO}_4/\Delta
\]

1-propanol \(\rightarrow\) propene + water

- Other types of reactions, like addition, elimination, substitution and rearrangement should also be studied for the calculation of atom economy.

4. Use of enzymes as catalysts

- Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide.

5. Alternative Green solvents

- Extraction of D-limonene from orange peel using liquid CO2 prepared form dry ice.

Mechanochemical solvent free synthesis of azomethines

6. Alternative sources of energy

- Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper (II).
- Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reference Books

CEMADSE05T: INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE
(Credits: Theory-06, Practicals-02)

60 Lectures Marks: 50

Silicate Industries:
(16 Lectures) Marks: 12

Glass: Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass.

Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications, superconducting and semiconducting oxides, fullerenes carbon nanotubes and carbon fibre.

Cements: Classification of cement, ingredients and their role, Manufacture of cement and the setting process, quick setting cements.

Fertilizers:
(8 Lectures) Marks: 06

Different types of fertilizers. Manufacture of the following fertilizers: Urea, ammonium nitrate, calcium ammonium nitrate, ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers, potassium chloride, potassium sulphate.

Surface Coatings:
(10 Lectures) Marks: 06

Plastic paint), Dyes, Wax polishing, Water and Oil paints, additives, Metallic coatings (electrolytic and electroless), metal spraying and anodizing.

Batteries:
(6 Lectures) Marks: 06

Primary and secondary batteries, battery components and their role, Characteristics of Battery. Working of following batteries: Pb acid, Li-Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell.

Alloys:
(10 Lectures) Marks: 08

Classification of alloys, ferrous and non-ferrous alloys, Specific properties of elements in alloys. Manufacture of Steel (removal of silicon decarbonization, demanganization, desulphurization dephosphorisation) and surface treatment (Ar and heat treatment, nitriding, carburizing). Composition and properties of different types of steels.

Catalysis:
(6 Lectures) Marks: 06

General principles and properties of catalysts, homogenous catalysis (catalytic steps and examples) and heterogenous catalysis (catalytic steps and examples) and their industrial applications, Deactivation or regeneration of catalysts.

Phase transfer catalysts, application of zeolites as catalysts.

Chemical explosives:
(4 Lectures) Marks: 06

Origin of explosive properties in organic compounds, preparation and explosive properties of lead azide, PETN, cyclonite (RDX). Introduction to rocket propellants.

Reference Books

CEMADSE05P: INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE LAB
(60 Lectures/Contact Hours) Marks: 25

1. Determination of free acidity in ammonium sulphate fertilizer.
2. Estimation of Calcium in Calcium ammonium nitrate fertilizer.
3. Estimation of phosphoric acid in superphosphate fertilizer.
4. Electroless metallic coatings on ceramic and plastic material.
5. Determination of composition of dolomite (by complexometric titration).
6. Analysis of (Cu, Ni); (Cu, Zn) in alloy or synthetic samples.
8. Preparation of pigment (zinc oxide).

Reference Books

CEMADSE06T: POLYMER CHEMISTRY
(Credits: Theory-06, Practicals-02)

Theory: 60 Lectures Marks: 50

Introduction and history of polymeric materials:
(04 Lectures) Marks: 04

Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers.
Functionality and its importance:
(08 Lectures) Marks: 06

Kinetics of Polymerization:
(08 Lectures) Marks: 06
Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques.

Crystallization and crystallinity:
(04 Lectures) Marks: 04
Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point.

Nature and structure of polymers:
(04 Lectures) Marks: 04
Structure Property relationships.

Determination of molecular weight of polymers:
(08 Lectures) Marks: 06
(Mn, Mw, etc) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance. Polydispersity index.

Glass transition temperature (Tg) and determination of Tg:
(08 Lectures) Marks: 04
Free volume theory, WLFequation, Factors affecting glass transition temperature (Tg).

Polymer Solution:
(08 Lectures) Marks: 06
Criteria for polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory, Lower and Upper critical solution temperatures.

Properties of Polymer:
(10 Lectures) Marks: 10
(Physical, thermal, Flow & Mechanical Properties).

Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers, acrylic polymers, fluoro polymers, polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers, polydiienes, Polycarbonates, Conducting Polymers, [polyacetylene, polyaniline, poly(p-phenylene sulphide polypyrrole, polythiophene)].

Reference Books

CEMADSE06P: POLYMER CHEMISTRY LAB
(60 Lectures/Contact Hours) Marks: 25

1. Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).
 a) Purification of monomer
 b) Polymerization using benzoyl peroxide (BPO) / 2,2’-azo-bisisobutylonitrile (AIBN)

2. Preparation of nylon 66/6

3. Interfacial polymerization, preparation of polyester from isophthaloyl chloride (IPC) and phenolphthalein

4. Redox polymerization of acrylamide

5. Precipitation polymerization of acrylonitrile

6. Preparation of urea-formaldehyde resin

7. Preparations of novalac resin/ resold resin.
8. Microscale Emulsion Polymerization of Poly(methylacrylate).

Polymer characterization

1. Determination of molecular weight by viscometry:
 (a) Polyacrylamide-aq.NaNO₂ solution
 (b) (Poly vinyl propyldine (PVP) in water
2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol) (PVOH) and the fraction of “head-to-head” monomer linkages in the polymer.
3. Determination of molecular weight by end group analysis: Polyethylene glycol (PEG) (OH group).
5. Determination of hydroxyl number of a polymer using colorimetric method.

Polymer analysis

1. Estimation of the amount of HCHO in the given solution by sodium sulphite method
2. Instrumental Techniques
3. IR studies of polymers
4. DSC analysis of polymers
5. Preparation of polyacrylamide and its electrophoresis

*at least 7 experiments to be carried out.

Reference Books

GENERIC ELECTIVE COURSE (HONOURS) IN CHEMISTRY

CHEMISTRY

Core papers Chemistry (Credit: 06 each):

<table>
<thead>
<tr>
<th>SEM-I</th>
<th>SEM-II</th>
<th>SEM-III</th>
<th>SEM-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMHGE01</td>
<td>CEMHGE02</td>
<td>CEMHGE03</td>
<td>CEMHGE04</td>
</tr>
</tbody>
</table>
SEMESTER-I

CEMHGEC01T: ATOMIC STRUCTURE, CHEMICAL PERIODICITY, ACIDS AND BASES, REDOX REACTIONS, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Section A: Inorganic Chemistry-I
(30 Lectures) Marks: 25

Atomic Structure (10 Lectures)

Chemical Periodicity (05 Lectures)
Classification of elements on the basis of electronic configuration: general characteristics of s-, p-, d- and f-block elements. Positions of hydrogen and noble gases. Atomic and ionic radii, ionization potential, electron affinity, and electronegativity; periodic and group-wise variation of above properties in respect of s- and p- block elements.

Acids and bases (10 Lectures)
Brönsted–Lowry concept, conjugate acids and bases, relative strengths of acids and bases, effects of substituent and solvent, differentiating and levelling solvents. Lewis acid-base concept, classification of Lewis acids and bases, Lux-Flood concept and solvent system concept. Hard and soft acids and bases (HSAB concept), applications of HSAB process.

Redox reactions (05 Lectures)
Balancing of equations by oxidation number and ion-electron method oxidimetry and reductimetry.

Section B: Organic Chemistry-I
(30 Lectures) Marks: 25

Fundamentals of Organic Chemistry (5 Lectures)
Electronic displacements: inductive effect, resonance and hyperconjugation; cleavage of bonds: homolytic and heterolytic; structure of organic molecules on the basis of VBT; nucleophiles electrophiles; reactive intermediates: carbocations, carbanions and free radicals.

Stereochemistry (8 Lectures)
Different types of isomerism; geometrical and optical isomerism; concept of chirality and optical activity (up to two carbon atoms); asymmetric carbon atom; elements of symmetry (plane and centre); interconversion of Fischer and Newman representations; enantiomerism
and diastereomerism, meso compounds; threo and erythro, D and L, cis and trans nomenclature; CIP Rules: R/S (upto 2 chiral carbon atoms) and E/Z nomenclature.

Nucleophilic Substitution and Elimination Reactions (5 Lectures)

Nucleophilic substitutions: \(S_N^1 \) and \(S_N^2 \) reactions; eliminations: E1 and E2 reactions (elementary mechanistic aspects); Saytzeff and Hofmann eliminations; elimination vs substitution.

Aliphatic Hydrocarbons (12 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structures.

Alkenes: (up to 5 Carbons). *Preparation*: elimination reactions: dehydration of alcohols and dehydrohalogenation of alkyl halides; cis alkenes (partial catalytic hydrogenation) and trans alkenes (Birch reduction). *Reactions*: cis-addition (alkaline KMnO\(_4\)) and trans-addition (bromine) with mechanism, addition of HX [Markownikoff’s (with mechanism) and antiMarkownikoff’s addition], hydration, ozonolysis, oxymercuration-demercuration and hydroboration-oxidation reaction.

Alkynes: (up to 5 Carbons). *Preparation*: acetylene from CaC\(_2\) and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal dihalides. *Reactions*: formation of metal acetylides, addition of bromine and alkaline KMnO\(_4\), ozonolysis and oxidation with hot alkaline KMnO\(_4\).

Reference Books:

5. Sethi, A. *Conceptual Organic Chemistry*; New Age International Publisher.
Section A: Inorganic Chemistry –LAB (30 Lectures)

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.

2. Estimation of oxalic acid by titrating it with KMnO₄.

3. Estimation of water of crystallization in Mohr’s salt by titrating with KMnO₄.

4. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using internal indicator.

5. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃.

Section B: Organic Chemistry- LAB (30 Lectures)

Qualitative Analysis of Single Solid Organic Compound(s)
Experiment A: Detection of special elements (N, Cl, and S) in organic compounds.
Experiment B: Solubility and Classification (solvents: H₂O, dil. HCl, dil. NaOH)
Experiment C: Detection of functional groups: Aromatic-NO₂, Aromatic -NH₂, -COOH, carbonyl (no distinction of -CHO and >C=O needed), -OH (phenolic) in solid organic compounds.

Experiments A - C with unknown (at least 6) solid samples containing not more than two of the above type of functional groups should be done.

Reference Books:

CEMHGEC02T: STATES OF MATTER & CHEMICAL KINETICS, CHEMICAL BONDING & MOLECULAR STRUCTURE, p-BLOCK ELEMENTS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Section A: Physical Chemistry-I
(30 Lectures) Marks: 25

Kinetic Theory of Gases and Real gases (10 Lectures)

Concept of pressure and temperature; Collision of gas molecules; Collision diameter; Collision number and mean free path; Frequency of binary collisions (similar and different molecules); Rate of effusion

Nature of distribution of velocities, Maxwell’s distribution of speed and kinetic energy; Average velocity, root mean square velocity and most probable velocity; Principle of equipartition of energy and its application to calculate the classical limit of molar heat capacity of gases

Deviation of gases from ideal behavior; compressibility factor; Boyle temperature; Andrew’s and Amagat’s plots; van der Waals equation and its features; its derivation and application in explaining real gas behaviour; Existence of critical state, Critical constants in terms of van der Waals constants; Law of corresponding states

Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only)

Liquids (06 Lectures)

Definition of Surface tension, its dimension and principle of its determination using stalgmometer; Viscosity of a liquid and principle of determination of coefficient of viscosity using Ostwald viscometer; Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only)

Solids (06 Lectures)

Forms of solids, crystal systems, unit cells, Bravais lattice types, Symmetry elements; Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices; Miller indices of different planes and interplanar distance, Bragg’s law; Structures of NaCl, KCl and CsCl (qualitative treatment only); Defects in crystals; Glasses and liquid crystals.

Chemical Kinetics (08 Lectures)
Introduction of rate law, Order and molecularity; Extent of reaction; rate constants; Rates of First, second and nth order reactions and their Differential and integrated forms (with derivation); Pseudo first order reactions; Determination of order of a reaction by half-life and differential method; Opposing reactions, consecutive reactions and parallel reactions

Temperature dependence of rate constant; Arrhenius equation, energy of activation; Collision theory; Lindemann theory of unimolecular reaction; outline of Transition State theory (classical treatment)

Reference Books:

8. Mandal, A. K. Degree Physical and General Chemistry Sarat Book House
9. Pahari, S., Physical Chemistry New Central Book Agency

Section B: Inorganic Chemistry-II
(30 Lectures) Marks: 25

Chemical Bonding and Molecular Structure (16 Lectures)

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, BornHaber cycle and its applications, polarizing power and polarizability. Fajan’s rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements.

Concept of resonance and resonating structures in various inorganic and organic compounds.
MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods. (including idea of s- p mixing) and heteronuclear diatomic molecules such as CO, NO and NO\(^+\). Comparison of VB and MO approaches.
Comparative study of p-block elements: (14 Lectures)

Group trends in electronic configuration, modification of pure elements, common oxidation states, inert pair effect, and their important compounds in respect of the following groups of elements:

i) B-Al-Ga-In-Tl
ii) C-Si-Ge-Sn-Pb
iii) N-P-As-Sb-Bi
iv) O-S-Se-Te
v) F-Cl-Br-I

Reference Books:

(60 Lectures/Contact Hours) Marks: 25

Section A: Physical Chemistry-LAB

(15x2=30 Lectures)

(Minimum five experiments to complete)

(I) Surface tension measurement (use of organic solvents excluded)

 a) Determination of the surface tension of a liquid or a dilute solution using a Stalagmometer

 b) Study of the variation of surface tension of a detergent solution with concentration

(II) Viscosity measurement (use of organic solvents excluded)

 a) Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald’s viscometer

 b) Study of the variation of viscosity of an aqueous solution with concentration of solute

(III) Study the kinetics of the following reactions

 a) Initial rate method: Iodide-persulphate reaction

 b) Integrated rate method:

 (i) Acid hydrolysis of methyl acetate with hydrochloric acid

 (ii) Compare the strengths of HCl and H₂SO₄ by studying kinetics of hydrolysis of methyl acetate

Reference Books:

2. Palit, S.R., Practical Physical Chemistry Science Book Agency
3. Mukherjee, N.G., Selected Experiments in Physical Chemistry J. N. Ghose & Sons
4. Dutta, S.K., Physical Chemistry Experiments Bharati Book Stall

Section B: Inorganic Chemistry-LAB

(30 Lectures)

Qualitative semimicro analysis of mixtures containing three radicals. Emphasis should be given to the understanding of the chemistry of different reactions.
Acid Radicals: Cl⁻, Br⁻, I⁻, NO₂⁻, NO₃⁻, S²⁻, SO₄²⁻, PO₄³⁻, BO₃³⁻, H₃BO₃.
Basic Radicals: Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺, Cr³⁺, Mn²⁺, Fe³⁺, Ni²⁺, Cu²⁺, NH₄⁺.

Reference Books:

CEMHGEC03T: CHEMICAL ENERGETICS, EQUILIBRIA, ORGANIC CHEMISTRY-II
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Section A: Physical Chemistry-II
(30 Lectures) Marks: 25

Chemical Energetics (14 Lectures)
Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics; Concept of heat, work, internal energy and statement of first law; enthalpy, H; relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases

Standard states; Heats of reaction; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; Laws of thermochemistry; bond energy, bond dissociation energy and resonance energy from thermochemical data, Kirchhoff’s equations and effect of pressure on enthalpy of reactions; Adiabatic flame temperature; explosion temperature

Statement of the second law of thermodynamics; Concept of heat reservoirs and heat engines; Carnot cycle; Physical concept of Entropy; Carnot engine, refrigerator and efficiency; Entropy change of systems and surroundings for various processes and transformations; Auxiliary state functions (G and A) and Criteria for spontaneity and equilibrium.

Chemical Equilibrium: (08 Lectures)
Thermodynamic conditions for equilibrium, degree of advancement; Variation of free energy with degree of advancement; Equilibrium constant and standard Gibbs’ free energy change; Definitions of K_P, K_C and K_X and relation among them; van’t Hoff’s reaction isotherm, isobar and isochore from different standard states; Shifting of equilibrium due to change in external parameters e.g. temperature and pressure; variation of equilibrium constant with addition to inert gas; Le Chatelier’s principle

Ionic Equilibria: (08 Lectures)
Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water; Ionization of weak acids and bases, pH scale, common ion effect; Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts; Buffer solutions; Solubility and solubility product of sparingly soluble salts – applications of solubility product principle
Reference Books:

9. Mandal, A. K. *Degree Physical and General Chemistry* Sarat Book House

Section-B: Organic Chemistry-II
(30 Lectures) Marks: 25

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structures.

Aromatic Hydrocarbons

Benzene: Preparation: from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid. *Reactions:* electrophilic substitution (general mechanism); nitration (with mechanism), halogenations (chlorination and bromination), sulphonation and Friedel-Craft’s reaction (alkylation and acylation) (up to 4 carbons on benzene); side chain oxidation of alkyl benzenes (up to 4 carbons on benzene).

Organometallic Compounds

(2 Lectures)

Introduction; *Grignard reagents: Preparations* (from alkyl and aryl halide); concept of *umpolung*; Reformatsky reaction.

Aryl Halides

(3 Lectures)

Alcohols, Phenols and Ethers

(11 Lectures)

Alcohols: (up to 5 Carbons). *Preparation:* 1°-, 2°- and 3°- alcohols: using Grignard reagent, reduction of aldehydes, ketones, carboxylic acid and esters; *Reactions:* With sodium, HX (Lucas test), oxidation (alkaline KMnO₄, acidic dichromate, concentrated HNO₃);
Oppenauer oxidation;
Diols: Preparation (with OsO₄); pinacol- pinacolone rearrangement (with mechanism) (*with symmetrical diols only*).

Phenols: **Preparation:** cumene hydroperoxide method, from diazonium salts; acidic nature of phenols; **Reactions:** electrophilic substitution: nitration and halogenations; Reimer -Tiemann reaction, Houben–Hoesch condensation, Schotten –Baumann reaction, Fries rearrangement and Claisen rearrangement.

Ethers: **Preparation:** Williamson’s ether synthesis; **Reaction:** cleavage of ethers with HI.
Carbonyl Compounds (08 Lectures)

Aldehydes and Ketones (aliphatic and aromatic): (Formaldehyde, acetaldehyde, acetone and benzaldehyde): **Preparation:** from acid chlorides, from nitriles and from Grignard reagents; general properties of aldehydes and ketones; **Reactions:** with HCN, ROH, NaHSO₃, NH₂-G derivatives and with Tollens’ and Fehling’s reagents; iodoform test; aldol condensation (with mechanism); Cannizzaro reaction (with mechanism), Wittig reaction, benzoin condensation; Clemmensen reduction, Wolff- Kishner reduction and Meerwein-Pondorff-Verley (MPV) reduction.

Reference Books:

CEMHGEC03P: CHEMICAL ENERGETICS, EQUILIBRIA, ORGANIC CHEMISTRY LAB
(60 Lectures/Contact Hours) Marks: 25

Section A: Physical Chemistry-LAB (15x2=30 Lectures)

(Minimum five experiments to complete)

(I) Thermochemistry (Any three)

1. Determination of heat capacity of calorimeter for different volumes

2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide

3. Determination of enthalpy of ionization of acetic acid

4. Determination of enthalpy of hydration of copper sulphate

(II) Ionic Equilibria (Any two)

a) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter and compare it with the indicator method

b) Preparation of buffer solutions and find the pH of an unknown buffer solution by colour matching method (using following buffers)
 (i) Sodium acetate-acetic acid
 (ii) Ammonium chloride-ammonium hydroxide

c) Study of the solubility of benzoic acid in water

Reference Books:

2. Palit, S.R., Practical Physical Chemistry Science Book Agency
3. Mukherjee, N.G., Selected Experiments in Physical Chemistry J. N. Ghose & Sons
4. Dutta, S.K., Physical Chemistry Experiments Bharati Book Stall

Section B: Organic Chemistry-LAB

Identification of a pure organic compound

Solid compounds: oxalic acid, tartaric acid, succinic acid, resorcinol, urea, glucose, benzoic acid and salicylic acid.
Liquid Compounds: methyl alcohol, ethyl alcohol, acetone, aniline, dimethylaniline, benzaldehyde, chloroform and nitrobenzene

Reference Books:

SEMESTER-IV

CEMHGC04T: SOLUTIONS, PHASE EQUILIBRIA, CONDUCTANCE, ELECTROCHEMISTRY & ANALYTICAL AND ENVIRONMENTAL CHEMISTRY-I
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures Marks: 50

Section A: Physical Chemistry-III
(30 Lectures) Marks: 25

Solutions (06 Lectures)

Ideal solutions and Raoult’s law, deviations from Raoult’s law – non-ideal solutions; Vapour pressure-composition and temperature-composition curves of ideal and non-ideal solutions; Distillation of solutions; Lever rule; Azeotropes

Critical solution temperature; effect of impurity on partial miscibility of liquids; Immiscibility of liquids- Principle of steam distillation; Nernst distribution law and its applications, solvent extraction

Phase Equilibria (08 Lectures)

Phases, components and degrees of freedom of a system, criteria of phase equilibrium; Gibbs’ Phase Rule and its thermodynamic derivation; Derivation of Clausius – Clapeyron equation and its importance in phase equilibria; Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (leadsilver, FeCl₃-H₂O and Na-K only)

Conductance (08 Lectures)

Conductance, cell constant, specific conductance and molar conductance; Variation of specific and equivalent conductance with dilution for strong and weak electrolytes; Kohlrausch’s law of independent migration of ions; Equivalent and molar conductance at infinite dilution and their determination for strong and weak electrolytes; Ostwald’s dilution law; Application of conductance measurement (determination of solubility product and ionic product of water); Conductometric titrations (acid-base)

Transport Number and principles of Hittorf’s and Moving-boundary method

Electromotive force (08 Lectures)

Faraday’s laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry; Chemical cells, reversible
and irreversible cells with examples; Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential; Electrochemical series; Thermodynamics of a reversible cell, calculation of thermodynamic properties: \(G, H \) and \(S \) from EMF data

Concentration cells with and without transference, liquid junction potential; pH determination using hydrogen electrode and quinhydrone; Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation)

Reference Books:

9. Pahari, S., Physical Chemistry New Central Book Agency

Section B: Analytical and Environmental Chemistry
(30 Lectures) Marks: 25

Chemical Analysis

Gravimetric analysis: solubility product and common ion effect; requirements of gravimetry; gravimetric estimation of chloride, sulphate, lead, barium, nickel, copper and zinc.

Volumetric analysis: primary and secondary standard substances; principles of acid-base, oxidation – reduction and complexometric titrations; indicators: acid-base, redox and metal ion; principles of estimation of mixtures: \(\text{NaHCO}_3 \) and \(\text{Na}_2\text{CO}_3 \) (by acidimetry); iron, copper, manganese and chromium (by redox titration); zinc, aluminum, calcium and magnesium (by complexometric EDTA titration).

Chromatography: chromatographic methods of analysis: column chromatography and thin layer chromatography.

Environmental Chemistry

The Atmosphere: composition and structure of the atmosphere; troposphere, stratosphere, mesosphere and thermosphere; ozone layer and its role; major air pollutants: CO, \(\text{SO}_2 \), \(\text{NO}_x \) and particulate matters – their origin and harmful effects; problem of ozone layer depletion; green house effect; acid rain and photochemical smog; air pollution episodes: air quality
standard; air pollution control measures: cyclone collector, electrostatic precipitator, catalytic converter.

The Hydrosphere: environmental role of water, natural water sources, water treatment for industrial, domestic and laboratory uses; water pollutants; action of soaps and detergents, phosphates, industrial effluents, agricultural runoff, domestic wastes; thermal pollution, radioactive pollution and their effects on animal and plant life; water pollution episodes: water pollution control measures: waste water treatment; chemical treatment and microbial treatment; water quality standards: DO, BOD, COD, TDS and hardness parameters; desalination of sea water: reverse osmosis, electrodialysis.

The Lithosphere: water and air in soil, waste matters and pollutants in soil, waste classification, treatment and disposal; soil pollution and control measures.

Reference Books:

Section A: Physical Chemistry-LAB (15x2=30 Lectures)

(Minimum six experiments to complete)

(I) Distribution Law (Any one)

Study of the equilibrium of one of the following reactions by the distribution method:

\[\text{I}_2(\text{aq}) + \text{I}^- (\text{aq}) = \text{I}_3^- (\text{aq}) \]

\[\text{Cu}^{2+} (\text{aq}) + x\text{NH}_2(\text{aq}) = [\text{Cu(NH}_3)_x]^{2+} \]

(II) Phase equilibria (Any one)

a) Construction of the phase diagram of a binary system (simple eutectic) using cooling curves

b) Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it

(III) Conductance

a) Determination of dissociation constant of a weak acid (cell constant, equivalent conductance are also determined)

b) Perform the following conductometric titrations: (Any one)
 (i) Strong acid vs. strong base
 (ii) Weak acid vs. strong base

(IV) Potentiometry

Perform the following potentiometric titrations:
 (i) Weak acid vs. strong base
 (ii) Potassium dichromate vs. Mohr's salt

Reference Books:

2. Palit, S.R., Practical Physical Chemistry Science Book Agency
3. Mukherjee, N.G., Selected Experiments in Physical Chemistry J. N. Ghose & Sons

Section B: Analytic and Environmental Chemistry-LAB (30 Lectures)

1. To find the total hardness of water by EDTA titration.
2. To find the PH of an unknown solution by comparing color of a series of HCl solutions + 1 drop of methyl orange, and a similar series of NaOH solutions + 1 drop of phenolphthalein.
3. To determine the rate constant for the acid catalysed hydrolysis of an ester.
4. Determination of the strength of the H₂O₂ sample.
5. To determine the solubility of a sparingly soluble salt, e.g. KHTa (one bottle)

Reference Books:

SKILL ENHANCEMENT COURSE (HONOURS) IN CHEMISTRY

CEMSSEC001– BASIC ANALYTICAL CHEMISTRY
(Credits: 2 Lectures: 30) Marks: 25

Introduction

Introduction to Analytical Chemistry and its interdisciplinary nature. Concept of sampling. Importance of accuracy, precision and sources of error in analytical measurements. Presentation of experimental data and results, from the point of view of significant figures.

Analysis of soil

Composition of soil, Concept of pH and pH measurement, Complexometric titrations, Chelation, Chelating agents, use of indicators 1. Determination of pH of soil samples. 2. Estimation of Calcium and Magnesium ions as Calcium carbonate by complexometric titration.

Analysis of water

Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods. 1. Determination of pH, acidity and alkalinity of a water sample. 2. Determination of dissolved oxygen (DO) of a water sample.

Analysis of food products

Nutritional value of foods, idea about food processing and food preservations and adulteration. 1. Identification of adulterants in some common food items like coffee powder, asafoetida, chilli powder, turmeric powder, coriander powder and pulses, etc. 2. Analysis of preservatives and colouring matter.

Chromatography

Definition, general introduction on principles of chromatography, paper chromatography, TLC etc. 1. Paper chromatographic separation of mixture of metal ion (Fe3+ and Al3+). 2. To compare paint samples by TLC method.
Ion-exchange

Column, ion-exchange chromatography etc. Determination of ion exchange capacity of anion / cation exchange resin (using batch procedure if use of column is not feasible).

Analysis of cosmetics

Major and minor constituents and their function
1. Analysis of deodorants and antiperspirants, Al, Zn, boric acid, chloride, sulphate.
2. Determination of constituents of talcum powder: Magnesium oxide, Calcium oxide, Zinc oxide and Calcium carbonate by complexometric titration

Suggested Applications (Any one)

1. To study the use of phenolphthalein in trap cases.
2. To analyse arson accelerants.
3. To carry out analysis of gasoline.

Suggested Instrumental demonstrations

1. Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.
3. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft Drinks

Reference Books

Review of Concepts from Core Course

Carbohydrates: Biological importance of carbohydrates, Metabolism, Cellular currency of energy (ATP), Glycolysis, Alcoholic and Lactic acid fermentations, Krebs cycle. Isolation and characterization of polysachharides.

Proteins: Classification, biological importance; Primary and secondary and tertiary structures of proteins: α-helix and β- pleated sheets, Isolation, characterization, denaturation of proteins. Enzymes: Nomenclature, Characteristics (mention of Ribozymes), and Classification; Active site, Mechanism of enzyme action, Stereospecificity of enzymes, Coenzymes and cofactors, Enzyme inhibitors, Introduction to Biocatalysis: Importance in “Green Chemistry” and Chemical Industry.

Lipids: Classification. Biological importance of triglycerides and phosphoglycerides and cholesterol; Lipid membrane, Liposomes and their biological functions and underlying applications.

Enzymes: Nomenclature, classification, effect of pH, temperature on enzyme activity, enzyme inhibition.

Biochemistry of disease: A diagnostic approach by blood/ urine analysis.

Hands On Practical

Identification and estimation of the following:
1. Carbohydrates – qualitative and quantitative.
2. Lipids – qualitative.
3. Determination of the iodine number of oil.
4. Determination of the saponification number of oil.
5. Determination of cholesterol using Liebermann- Burchard reaction.
7. Isolation of protein.
8. Determination of protein by the Biuret reaction.
9. Determination of nucleic acids
Reference Books
